Multilevel Modeling of Social Problems

Multilevel Modeling of Social Problems PDF Author: Robert B. Smith
Publisher: Springer Science & Business Media
ISBN: 9048198550
Category : Social Science
Languages : en
Pages : 565

Get Book Here

Book Description
Uniquely focusing on intersections of social problems, multilevel statistical modeling, and causality; the substantively and methodologically integrated chapters of this book clarify basic strategies for developing and testing multilevel linear models (MLMs), and drawing casual inferences from such models. These models are also referred to as hierarchical linear models (HLMs) or mixed models. The statistical modeling of multilevel data structures enables researchers to combine contextual and longitudinal analyses appropriately. But researchers working on social problems seldom apply these methods, even though the topics they are studying and the empirical data call for their use. By applying multilevel modeling to hierarchical data structures, this book illustrates how the use of these methods can facilitate social problems research and the formulation of social policies. It gives the reader access to working data sets, computer code, and analytic techniques, while at the same time carefully discussing issues of causality in such models. This book innovatively: •Develops procedures for studying social, economic, and human development. • Uses typologies to group (i.e., classify or nest) the level of random macro-level factors. • Estimates models with Poisson, binomial, and Gaussian end points using SAS's generalized linear mixed models (GLIMMIX) procedure. • Selects appropriate covariance structures for generalized linear mixed models. • Applies difference-in-differences study designs in the multilevel modeling of intervention studies. •Calculates propensity scores by applying Firth logistic regression to Goldberger-corrected data. • Uses the Kenward-Rogers correction in mixed models of repeated measures. • Explicates differences between associational and causal analysis of multilevel models. • Consolidates research findings via meta-analysis and methodological critique. •Develops criteria for assessing a study's validity and zone of causality. Because of its social problems focus, clarity of exposition, and use of state-of-the-art procedures; policy researchers, methodologists, and applied statisticians in the social sciences (specifically, sociology, social psychology, political science, education, and public health) will find this book of great interest. It can be used as a primary text in courses on multilevel modeling or as a primer for more advanced texts.

Multilevel Modeling of Social Problems

Multilevel Modeling of Social Problems PDF Author: Robert B. Smith
Publisher: Springer Science & Business Media
ISBN: 9048198550
Category : Social Science
Languages : en
Pages : 565

Get Book Here

Book Description
Uniquely focusing on intersections of social problems, multilevel statistical modeling, and causality; the substantively and methodologically integrated chapters of this book clarify basic strategies for developing and testing multilevel linear models (MLMs), and drawing casual inferences from such models. These models are also referred to as hierarchical linear models (HLMs) or mixed models. The statistical modeling of multilevel data structures enables researchers to combine contextual and longitudinal analyses appropriately. But researchers working on social problems seldom apply these methods, even though the topics they are studying and the empirical data call for their use. By applying multilevel modeling to hierarchical data structures, this book illustrates how the use of these methods can facilitate social problems research and the formulation of social policies. It gives the reader access to working data sets, computer code, and analytic techniques, while at the same time carefully discussing issues of causality in such models. This book innovatively: •Develops procedures for studying social, economic, and human development. • Uses typologies to group (i.e., classify or nest) the level of random macro-level factors. • Estimates models with Poisson, binomial, and Gaussian end points using SAS's generalized linear mixed models (GLIMMIX) procedure. • Selects appropriate covariance structures for generalized linear mixed models. • Applies difference-in-differences study designs in the multilevel modeling of intervention studies. •Calculates propensity scores by applying Firth logistic regression to Goldberger-corrected data. • Uses the Kenward-Rogers correction in mixed models of repeated measures. • Explicates differences between associational and causal analysis of multilevel models. • Consolidates research findings via meta-analysis and methodological critique. •Develops criteria for assessing a study's validity and zone of causality. Because of its social problems focus, clarity of exposition, and use of state-of-the-art procedures; policy researchers, methodologists, and applied statisticians in the social sciences (specifically, sociology, social psychology, political science, education, and public health) will find this book of great interest. It can be used as a primary text in courses on multilevel modeling or as a primer for more advanced texts.

Multilevel Modeling

Multilevel Modeling PDF Author: Steven P. Reise
Publisher: Psychology Press
ISBN: 1135655367
Category : Mathematics
Languages : en
Pages : 276

Get Book Here

Book Description
This book appeals to researchers who work with nested data structures or repeated measures data, including biomed & health researchers, clinical/intervention researchers and developmental & educational psychologists. Also some potential as a grad lvl tex

Multilevel Modeling Using R

Multilevel Modeling Using R PDF Author: W. Holmes Finch
Publisher: CRC Press
ISBN: 1351062255
Category : Mathematics
Languages : en
Pages : 253

Get Book Here

Book Description
Like its bestselling predecessor, Multilevel Modeling Using R, Second Edition provides the reader with a helpful guide to conducting multilevel data modeling using the R software environment. After reviewing standard linear models, the authors present the basics of multilevel models and explain how to fit these models using R. They then show how to employ multilevel modeling with longitudinal data and demonstrate the valuable graphical options in R. The book also describes models for categorical dependent variables in both single level and multilevel data. New in the Second Edition: Features the use of lmer (instead of lme) and including the most up to date approaches for obtaining confidence intervals for the model parameters. Discusses measures of R2 (the squared multiple correlation coefficient) and overall model fit. Adds a chapter on nonparametric and robust approaches to estimating multilevel models, including rank based, heavy tailed distributions, and the multilevel lasso. Includes a new chapter on multivariate multilevel models. Presents new sections on micro-macro models and multilevel generalized additive models. This thoroughly updated revision gives the reader state-of-the-art tools to launch their own investigations in multilevel modeling and gain insight into their research. About the Authors: W. Holmes Finch is the George and Frances Ball Distinguished Professor of Educational Psychology at Ball State University. Jocelyn E. Bolin is a Professor in the Department of Educational Psychology at Ball State University. Ken Kelley is the Edward F. Sorin Society Professor of IT, Analytics and Operations and the Associate Dean for Faculty and Research for the Mendoza College of Business at the University of Notre Dame.

Introducing Multilevel Modeling

Introducing Multilevel Modeling PDF Author: Ita G G Kreft
Publisher: SAGE
ISBN: 9781446230923
Category : Social Science
Languages : en
Pages : 164

Get Book Here

Book Description
This is the first accessible and practical guide to using multilevel models in social research. Multilevel approaches are becoming increasingly important in social, behavioural, and educational research and it is clear from recent developments that such models are seen as being more realistic, and potentially more revealing, than ordinary regression models. While other books describe these multilevel models in considerable detail none focuses on the practical issues and potential problems of doing multilevel analyses that are covered in Introducing Multilevel Modeling. The authors' approach is user-oriented and the formal mathematics and statistics are kept to a minimum. Other key features include the use of worked examples using real data sets, analyzed using the leading computer package for multilevel modeling - "MLn." Discussion site at: http: \www.stat.ucla.eduphplibw-agoraw-agora.phtml?bn=Sagebook Data files mentioned in the book are available from: http: \www.stat.ucla.edu deleeuwsagebook

Multilevel Modeling of Educational Data

Multilevel Modeling of Educational Data PDF Author: Ann A. O'Connell
Publisher: IAP
ISBN: 1607527294
Category : Education
Languages : en
Pages : 540

Get Book Here

Book Description
(sponsored by the Educational Statisticians, SIG) Multilevel Modeling of Educational Data, co-edited by Ann A. O’Connell, Ed.D., and D. Betsy McCoach, Ph.D., is the next volume in the series: Quantitative Methods in Education and the Behavioral Sciences: Issues, Research and Teaching (Information Age Publishing), sponsored by the Educational Statisticians' Special Interest Group (Ed-Stat SIG) of the American Educational Research Association. The use of multilevel analyses to examine effects of groups or contexts on individual outcomes has burgeoned over the past few decades. Multilevel modeling techniques allow educational researchers to more appropriately model data that occur within multiple hierarchies (i.e.- the classroom, the school, and/or the district). Examples of multilevel research problems involving schools include establishing trajectories of academic achievement for children within diverse classrooms or schools or studying school-level characteristics on the incidence of bullying. Multilevel models provide an improvement over traditional single-level approaches to working with clustered or hierarchical data; however, multilevel data present complex and interesting methodological challenges for the applied education research community. In keeping with the pedagogical focus for this book series, the papers this volume emphasize applications of multilevel models using educational data, with chapter topics ranging from basic to advanced. This book represents a comprehensive and instructional resource text on multilevel modeling for quantitative researchers who plan to use multilevel techniques in their work, as well as for professors and students of quantitative methods courses focusing on multilevel analysis. Through the contributions of experienced researchers and teachers of multilevel modeling, this volume provides an accessible and practical treatment of methods appropriate for use in a first and/or second course in multilevel analysis. A supporting website links chapter examples to actual data, creating an opportunity for readers to reinforce their knowledge through hands-on data analysis. This book serves as a guide for designing multilevel studies and applying multilevel modeling techniques in educational and behavioral research, thus contributing to a better understanding of and solution for the challenges posed by multilevel systems and data.

Multilevel Modeling

Multilevel Modeling PDF Author: Douglas A. Luke
Publisher: SAGE Publications
ISBN: 1544310285
Category : Social Science
Languages : en
Pages : 96

Get Book Here

Book Description
Multilevel Modeling is a concise, practical guide to building models for multilevel and longitudinal data. Author Douglas A. Luke begins by providing a rationale for multilevel models; outlines the basic approach to estimating and evaluating a two-level model; discusses the major extensions to mixed-effects models; and provides advice for where to go for instruction in more advanced techniques. Rich with examples, the Second Edition expands coverage of longitudinal methods, diagnostic procedures, models of counts (Poisson), power analysis, cross-classified models, and adds a new section added on presenting modeling results. A website for the book includes the data and the statistical code (both R and Stata) used for all of the presented analyses.

Advances in Multilevel Modeling for Educational Research

Advances in Multilevel Modeling for Educational Research PDF Author: Jeffrey R. Harring
Publisher: IAP
ISBN: 1681233290
Category : Education
Languages : en
Pages : 413

Get Book Here

Book Description
The significance that practitioners are placing on the use of multilevel models is undeniable as researchers want to both accurately partition variance stemming from complex sampling designs and understand relations within and between variables describing the hierarchical levels of these nested data structures. Simply scan the applied literature and one can see evidence of this trend by noticing the number of articles adopting multilevel models as their primary modeling framework. Helping to drive the popularity of their use, governmental funding agencies continue to advocate the use of multilevel models as part of a comprehensive analytic strategy for conducting rigorous and relevant research to improve our nation’s education system. Advances in Multilevel Modeling for Educational Research: Addressing Practical Issues Found in Real?World Applications is a resource intended for advanced graduate students, faculty and/or researchers interested in multilevel data analysis, especially in education, social and behavioral sciences. The chapters are written by prominent methodological researchers across diverse research domains such as educational statistics, quantitative psychology, and psychometrics. Each chapter exposes the reader to some of the latest methodological innovations, refinements and state?of?the?art developments and perspectives in the analysis of multilevel data including current best practices of standard techniques. We believe this volume will be particularly appealing to researchers in domains including but not limited to: educational policy and administration, educational psychology including school psychology and special education, and clinical psychology. In fact, we believe this volume will be a desirable resource for any research area that uses hierarchically nested data. The book will likely be attractive to applied and methodological researchers in several professional organizations such as the American Educational Research Association (AERA), the American Psychological Association (APA), the American Psychological Society (APS), the Society for Research on Educational Effectiveness (SREE), and other related organizations.

Multilevel Modeling for Social and Personality Psychology

Multilevel Modeling for Social and Personality Psychology PDF Author: John B Nezlek
Publisher: SAGE
ISBN: 1446209458
Category : Psychology
Languages : en
Pages : 121

Get Book Here

Book Description
The volume begins with a rationale for multilevel modeling (MLM). Different aspects of MLM such as centering and modeling error terms are discussed, and examining hypotheses within the multilevel framework is considered in detail. Step by step instructions for conducting multilevel analyses using the program HLM are presented, and these instructions are linked to data sets and program files on a website. The SAGE Library in Social and Personality Psychology Methods provides students and researchers with an understanding of the methods and techniques essential to conducting cutting-edge research. Each volume within the Library explains a specific topic and has been written by an active scholar (or scholars) with expertise in that particular methodological domain. Assuming no prior knowledge of the topic, the volumes are clear and accessible for all readers. In each volume, a topic is introduced, applications are discussed, and readers are led step by step through worked examples. In addition, advice about how to interpret and prepare results for publication are presented.

The SAGE Handbook of Multilevel Modeling

The SAGE Handbook of Multilevel Modeling PDF Author: Marc A. Scott
Publisher: SAGE
ISBN: 1473971314
Category : Social Science
Languages : en
Pages : 954

Get Book Here

Book Description
In this important new Handbook, the editors have gathered together a range of leading contributors to introduce the theory and practice of multilevel modeling. The Handbook establishes the connections in multilevel modeling, bringing together leading experts from around the world to provide a roadmap for applied researchers linking theory and practice, as well as a unique arsenal of state-of-the-art tools. It forges vital connections that cross traditional disciplinary divides and introduces best practice in the field. Part I establishes the framework for estimation and inference, including chapters dedicated to notation, model selection, fixed and random effects, and causal inference. Part II develops variations and extensions, such as nonlinear, semiparametric and latent class models. Part III includes discussion of missing data and robust methods, assessment of fit and software. Part IV consists of exemplary modeling and data analyses written by methodologists working in specific disciplines. Combining practical pieces with overviews of the field, this Handbook is essential reading for any student or researcher looking to apply multilevel techniques in their own research.

Multilevel Analysis

Multilevel Analysis PDF Author: Joop Hox
Publisher: Routledge
ISBN: 1317308689
Category : Psychology
Languages : en
Pages : 365

Get Book Here

Book Description
Applauded for its clarity, this accessible introduction helps readers apply multilevel techniques to their research. The book also includes advanced extensions, making it useful as both an introduction for students and as a reference for researchers. Basic models and examples are discussed in nontechnical terms with an emphasis on understanding the methodological and statistical issues involved in using these models. The estimation and interpretation of multilevel models is demonstrated using realistic examples from various disciplines including psychology, education, public health, and sociology. Readers are introduced to a general framework on multilevel modeling which covers both observed and latent variables in the same model, while most other books focus on observed variables. In addition, Bayesian estimation is introduced and applied using accessible software.