Multifield-based Modeling of Material Failure in High Performance Reinforced Cementitious Composites

Multifield-based Modeling of Material Failure in High Performance Reinforced Cementitious Composites PDF Author: D. F. Mora
Publisher:
ISBN: 9788494153129
Category :
Languages : en
Pages : 0

Get Book Here

Book Description

Multifield-based Modeling of Material Failure in High Performance Reinforced Cementitious Composites

Multifield-based Modeling of Material Failure in High Performance Reinforced Cementitious Composites PDF Author: D. F. Mora
Publisher:
ISBN: 9788494153129
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Multifield-based Modeling of Material Failure in High Performance Reinforced Cementitious Composites

Multifield-based Modeling of Material Failure in High Performance Reinforced Cementitious Composites PDF Author: D. F. Mora
Publisher:
ISBN: 9788494153129
Category :
Languages : en
Pages : 150

Get Book Here

Book Description


Modeling of Localized Deformation in High and Ultra-high Performance Fiber Reinforced Cementitious Composites

Modeling of Localized Deformation in High and Ultra-high Performance Fiber Reinforced Cementitious Composites PDF Author: Marta Miletić
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A low ratio between the compressive strength of concrete and its cost makes concrete one of the most widely used construction materials in civil engineering. Despite of a very good response to compressive stress, concrete exhibits a low tensile strength and limited tensile strain capacity. Adding short discrete fibers to a cementitious matrix can significantly improve its performance under tensile stress, thus ultimately exhibiting a ductile behavior. Nevertheless, in spite of their beneficial properties fiber reinforced cementitious composites remain underutilized in engineering practice. One of the main reasons for this is a lack of an adequate characterization of the tensile behavior as well as a lack of analysis methods that would allow engineers to incorporate fiber reinforced structural concrete elements into their design. Therefore, this dissertation has four key objectives: 1) to computationally model a stress-strain response of high performance fiber reinforced cementitious composites in uniaxial tension and uniaxial compression prior to macro-crack localization, 2) to develop and perform a diagnostic strain localization analysis for high performance fiber reinforced cementitious composites, the results of which can characterize effects of fibers on failure precursors, 3) to devise and perform an experimental program for characterization of ultra-high performance fiber reinforced cementitious composites, and 4) to characterize a full-fledged behavior including stress-strain and stress-crack opening displacement responses of ultra-high performance fiber reinforced cementitious composites in uniaxial tension. To quantify effects of fibers on onset of strain localization in fiber reinforced cementitious composites a combined computational/analytical models have been developed. To this end, linear-elastic multi-directional fibers were embedded into a cementitious matrix. The resulting composite was described by different types of two-invariant non-associated Drucker-Prager plasticity models. In order to investigate effects of a shape of a yield surface and hardening type linear and nonlinear yield surfaces, and linear and nonlinear hardening rules were considered. Diagnostic strain localization analyses were conducted for several plane stress uniaxial tension and uniaxial compression tests on non-reinforced cementitious composites as well as on high performance fiber-reinforced cementitious composites. It was found that presence of fibers delayed the inception of strain localization in all tests on fiber-reinforced composites. Furthermore, presence of fibers exerted a more significant effect on the strain localization direction and mode in uniaxial compression than in uniaxial tension. The main objective of experimental program was to facilitate characterization of the post-cracking tensile behavior of ultra-high performance fiber reinforced cementitious composites. To this end, five different mixes of fiber-reinforced cementitious composites were cast, whereby volumetric fiber content, fiber shape and water to binder ratio were the experimental variables. Two testing methods were adopted, a direct uniaxial tension test and four-point prism bending test. Two different post-cracking behaviors were observed in direct tension tests, softening and strain hardening accompanied with multiple cracking. On the other hand, the response from prism bending tests was less scattered. Several different inverse analyses were carried out to predict stress-strain and stress-crack opening displacement responses in uniaxial tension based on the prism bending tests. The analyses resulted in worthy correlations with the experimental data, thus suggesting that the prism bending test is a viable alternative to a much more challenging to perform direct tension test for ultra-high performance fiber reinforced composites.

PRO 30: 4th International RILEM Workshop on High Performance Fiber Reinforced Cement Composites (HPFRCC 4)

PRO 30: 4th International RILEM Workshop on High Performance Fiber Reinforced Cement Composites (HPFRCC 4) PDF Author: Antoine E. Naaman
Publisher: RILEM Publications
ISBN: 9782912143372
Category : Cement composites
Languages : en
Pages : 580

Get Book Here

Book Description


Strain Hardening Cement Composites: Structural Design and Performance

Strain Hardening Cement Composites: Structural Design and Performance PDF Author: Kanakubo Toshiyuki
Publisher: Springer Science & Business Media
ISBN: 9400748361
Category : Technology & Engineering
Languages : en
Pages : 95

Get Book Here

Book Description
Strain Hardening Cement Composites, SHCC hereafter, demonstrate excellent mechanical behavior showing tensile strain hardening and multiple fine cracks. This strain hardening behavior improves the durability of concrete structures employing SHCC and the multiple fine cracks enhance structural performance. Reliable tensile performance of SHCC enables us to design structures explicitly accounting for SHCC’s tensile properties. Reinforced SHCC elements (R/SHCC) indicate large energy absorbing performance under large seismic excitation. Against various types of loads, R/SHCC elements can be designed by superimposing re-bar performance and SHCC’s tensile performance. This report focuses on flexural design, shear design, FE modeling and anti-seismic design of R/SHCC elements as well as application examples. Establishing design methods for new materials usually leads to exploring application areas and this trend should be demonstrated by collecting actual application examples of SHCC in structures.

Models, Databases and Simulation Tools Needed for Realization of Integrated Computational Mat. Eng. (ICME 2010)

Models, Databases and Simulation Tools Needed for Realization of Integrated Computational Mat. Eng. (ICME 2010) PDF Author: Steven M. Arnold and Terry T. Wong, Editors
Publisher: ASM International
ISBN: 1615038434
Category : Technology & Engineering
Languages : en
Pages : 206

Get Book Here

Book Description


High Performance Fiber Reinforced Cement Composites 6

High Performance Fiber Reinforced Cement Composites 6 PDF Author: Gustavo J. Parra-Montesinos
Publisher: Springer Science & Business Media
ISBN: 9400724365
Category : Technology & Engineering
Languages : en
Pages : 567

Get Book Here

Book Description
High Performance Fiber Reinforced Cement Composites (HPFRCC) represent a class of cement composites whose stress-strain response in tension undergoes strain hardening behaviour accompanied by multiple cracking, leading to a high strain prior to failure. The primary objective of this International Workshop was to provide a compendium of up-to-date information on the most recent developments and research advances in the field of High Performance Fiber Reinforced Cement Composites. Approximately 65 contributions from leading world experts are assembled in these proceedings and provide an authoritative perspective on the subject. Special topics include fresh and hardening state properties; self-compacting mixtures; mechanical behavior under compressive, tensile, and shear loading; structural applications; impact, earthquake and fire resistance; durability issues; ultra-high performance fiber reinforced concrete; and textile reinforced concrete. Target readers: graduate students, researchers, fiber producers, design engineers, material scientists.

Fiber Reinforced Cement Composites

Fiber Reinforced Cement Composites PDF Author: Fadhel Aouadi
Publisher:
ISBN:
Category : Carbon fibers
Languages : en
Pages : 256

Get Book Here

Book Description


PRO 6: 3rd International RILEM Workshop on High Performance Fiber Reinforced Cement Composites (HPFRCC 3)

PRO 6: 3rd International RILEM Workshop on High Performance Fiber Reinforced Cement Composites (HPFRCC 3) PDF Author: Hans Wolfgang Reinhardt
Publisher: RILEM Publications
ISBN: 9782912143068
Category : Cement composites
Languages : en
Pages : 726

Get Book Here

Book Description


High Performance Fiber Reinforced Cement Composites 6

High Performance Fiber Reinforced Cement Composites 6 PDF Author: Gustavo J. Parra-Montesinos
Publisher: Springer
ISBN: 9789400724372
Category : Technology & Engineering
Languages : en
Pages : 559

Get Book Here

Book Description
High Performance Fiber Reinforced Cement Composites (HPFRCC) represent a class of cement composites whose stress-strain response in tension undergoes strain hardening behaviour accompanied by multiple cracking, leading to a high strain prior to failure. The primary objective of this International Workshop was to provide a compendium of up-to-date information on the most recent developments and research advances in the field of High Performance Fiber Reinforced Cement Composites. Approximately 65 contributions from leading world experts are assembled in these proceedings and provide an authoritative perspective on the subject. Special topics include fresh and hardening state properties; self-compacting mixtures; mechanical behavior under compressive, tensile, and shear loading; structural applications; impact, earthquake and fire resistance; durability issues; ultra-high performance fiber reinforced concrete; and textile reinforced concrete. Target readers: graduate students, researchers, fiber producers, design engineers, material scientists.