Multidimensional MOD Planes. Series on MOD Mathematics

Multidimensional MOD Planes. Series on MOD Mathematics PDF Author: W. B. Vasantha Kandasamy
Publisher: Infinite Study
ISBN: 159973365X
Category : Neutrosophic logic
Languages : en
Pages : 234

Get Book Here

Book Description
The main purpose of this book is to define and develop the notion of multi-dimensional MOD planes. Here, several interesting features enjoyed by these multi-dimensional MOD planes are studied and analyzed. Interesting problems are proposed to the reader.

Multidimensional MOD Planes. Series on MOD Mathematics

Multidimensional MOD Planes. Series on MOD Mathematics PDF Author: W. B. Vasantha Kandasamy
Publisher: Infinite Study
ISBN: 159973365X
Category : Neutrosophic logic
Languages : en
Pages : 234

Get Book Here

Book Description
The main purpose of this book is to define and develop the notion of multi-dimensional MOD planes. Here, several interesting features enjoyed by these multi-dimensional MOD planes are studied and analyzed. Interesting problems are proposed to the reader.

Multidimensional Hyperbolic Problems and Computations

Multidimensional Hyperbolic Problems and Computations PDF Author: James Glimm
Publisher: Springer Science & Business Media
ISBN: 1461391210
Category : Mathematics
Languages : en
Pages : 399

Get Book Here

Book Description
This IMA Volume in Mathematics and its Applications MULTIDIMENSIONAL HYPERBOLIC PROBLEMS AND COMPUTATIONS is based on the proceedings of a workshop which was an integral part ofthe 1988-89 IMA program on NONLINEAR WAVES. We are grateful to the Scientific Commit tee: James Glimm, Daniel Joseph, Barbara Keyfitz, Andrew Majda, Alan Newell, Peter Olver, David Sattinger and David Schaeffer for planning and implementing an exciting and stimulating year-long program. We especially thank the Work shop Organizers, Andrew Majda and James Glimm, for bringing together many of the major figures in a variety of research fields connected with multidimensional hyperbolic problems. A vner Friedman Willard Miller PREFACE A primary goal of the IMA workshop on Multidimensional Hyperbolic Problems and Computations from April 3-14, 1989 was to emphasize the interdisciplinary nature of contemporary research in this field involving the combination of ideas from the theory of nonlinear partial differential equations, asymptotic methods, numerical computation, and experiments. The twenty-six papers in this volume span a wide cross-section of this research including some papers on the kinetic theory of gases and vortex sheets for incompressible flow in addition to many papers on systems of hyperbolic conservation laws. This volume includes several papers on asymptotic methods such as nonlinear geometric optics, a number of articles applying numerical algorithms such as higher order Godunov methods and front tracking to physical problems along with comparison to experimental data, and also several interesting papers on the rigorous mathematical theory of shock waves.

Multidimensional Residue Theory and Applications

Multidimensional Residue Theory and Applications PDF Author: Alekos Vidras
Publisher: American Mathematical Society
ISBN: 1470471124
Category : Mathematics
Languages : en
Pages : 556

Get Book Here

Book Description
Residue theory is an active area of complex analysis with connections and applications to fields as diverse as partial differential and integral equations, computer algebra, arithmetic or diophantine geometry, and mathematical physics. Multidimensional Residue Theory and Applications defines and studies multidimensional residues via analytic continuation for holomorphic bundle-valued current maps. This point of view offers versatility and flexibility to the tools and constructions proposed, allowing these residues to be defined and studied outside the classical case of complete intersection. The book goes on to show how these residues are algebraic in nature, and how they relate and apply to a wide range of situations, most notably to membership problems, such as the Briançon–Skoda theorem and Hilbert's Nullstellensatz, to arithmetic intersection theory and to tropical geometry. This book will supersede the existing literature in this area, which dates back more than three decades. It will be appreciated by mathematicians and graduate students in multivariate complex analysis. But thanks to the gentle treatment of the one-dimensional case in Chapter 1 and the rich background material in the appendices, it may also be read by specialists in arithmetic, diophantine, or tropical geometry, as well as in mathematical physics or computer algebra.

Nonlinear Dispersive Equations

Nonlinear Dispersive Equations PDF Author: Christian Klein
Publisher: Springer Nature
ISBN: 3030914275
Category : Differential equations
Languages : en
Pages : 596

Get Book Here

Book Description
Nonlinear Dispersive Equations are partial differential equations that naturally arise in physical settings where dispersion dominates dissipation, notably hydrodynamics, nonlinear optics, plasma physics and Bose-Einstein condensates. The topic has traditionally been approached in different ways, from the perspective of modeling of physical phenomena, to that of the theory of partial differential equations, or as part of the theory of integrable systems. This monograph offers a thorough introduction to the topic, uniting the modeling, PDE and integrable systems approaches for the first time in book form. The presentation focuses on three "universal" families of physically relevant equations endowed with a completely integrable member: the Benjamin-Ono, Davey-Stewartson, and Kadomtsev-Petviashvili equations. These asymptotic models are rigorously derived and qualitative properties such as soliton resolution are studied in detail in both integrable and non-integrable models. Numerical simulations are presented throughout to illustrate interesting phenomena. By presenting and comparing results from different fields, the book aims to stimulate scientific interactions and attract new students and researchers to the topic. To facilitate this, the chapters can be read largely independently of each other and the prerequisites have been limited to introductory courses in PDE theory.

Multidimensional Systems Theory and Applications

Multidimensional Systems Theory and Applications PDF Author: N.K. Bose
Publisher: Springer Science & Business Media
ISBN: 9781402016233
Category : Technology & Engineering
Languages : en
Pages : 300

Get Book Here

Book Description
The Second Edition of this book includes an abundance of examples to illustrate advanced concepts and brings out in a text book setting the algorithms for bivariate polynomial matrix factorization results that form the basis of two-dimensional systems theory. Algorithms and their implementation using symbolic algebra are emphasized.

Mathematics for Physicists

Mathematics for Physicists PDF Author: Alexander Altland
Publisher: Cambridge University Press
ISBN: 1108471226
Category : Mathematics
Languages : en
Pages : 723

Get Book Here

Book Description
Introduces fundamental concepts and computational methods of mathematics from the perspective of physicists.

Bulletin (new Series) of the American Mathematical Society

Bulletin (new Series) of the American Mathematical Society PDF Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 562

Get Book Here

Book Description


Annals of Mathematics

Annals of Mathematics PDF Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 788

Get Book Here

Book Description


Spectral Approach to Transport Problems in Two-Dimensional Disordered Lattices

Spectral Approach to Transport Problems in Two-Dimensional Disordered Lattices PDF Author: Evdokiya Georgieva Kostadinova
Publisher: Springer
ISBN: 3030022129
Category : Science
Languages : en
Pages : 114

Get Book Here

Book Description
This book introduces the spectral approach to transport problems in infinite disordered systems characterized by Anderson-type Hamiltonians. The spectral approach determines (with probability one) the existence of extended states for nonzero disorder in infinite lattices of any dimension and geometry. Here, the author focuses on the critical 2D case, where previous numerical and experimental results have shown disagreement with theory. Not being based on scaling theory, the proposed method avoids issues related to boundary conditions and provides an alternative approach to transport problems where interaction with various types of disorder is considered. Beginning with a general overview of Anderson-type transport problems and their relevance to physical systems, it goes on to discuss in more detail the most relevant theoretical, numerical, and experimental developments in this field of research. The mathematical formulation of the innovative spectral approach is introduced together with a physical interpretation and discussion of its applicability to physical systems, followed by a numerical study of delocalization in the 2D disordered honeycomb, triangular, and square lattices. Transport in the 2D honeycomb lattice with substitutional disorder is investigated employing a spectral analysis of the quantum percolation problem. Next, the applicability of the method is extended to the classical regime, with an examination of diffusion of lattice waves in 2D disordered complex plasma crystals, along with discussion of proposed future developments in the study of complex transport problems using spectral theory.

Proceedings of the International Conference on Number Theory (Moscow, September 14-18, 1971)

Proceedings of the International Conference on Number Theory (Moscow, September 14-18, 1971) PDF Author: Ivan Matveevich Vinogradov
Publisher: American Mathematical Soc.
ISBN: 9780821830321
Category : Mathematics
Languages : en
Pages : 308

Get Book Here

Book Description
Papers and articles about number theory.