Author: Sylvie Benzoni-Gavage
Publisher: Oxford University Press, USA
ISBN: 019921123X
Category : Mathematics
Languages : en
Pages : 535
Book Description
Authored by leading scholars, this comprehensive text presents a view of the multi-dimensional hyperbolic partial differential equations, with a particular emphasis on problems in which modern tools of analysis have proved useful. It is useful to graduates and researchers in both hyperbolic PDEs and compressible fluid dynamics.
Multi-dimensional Hyperbolic Partial Differential Equations
Author: Sylvie Benzoni-Gavage
Publisher: Oxford University Press, USA
ISBN: 019921123X
Category : Mathematics
Languages : en
Pages : 535
Book Description
Authored by leading scholars, this comprehensive text presents a view of the multi-dimensional hyperbolic partial differential equations, with a particular emphasis on problems in which modern tools of analysis have proved useful. It is useful to graduates and researchers in both hyperbolic PDEs and compressible fluid dynamics.
Publisher: Oxford University Press, USA
ISBN: 019921123X
Category : Mathematics
Languages : en
Pages : 535
Book Description
Authored by leading scholars, this comprehensive text presents a view of the multi-dimensional hyperbolic partial differential equations, with a particular emphasis on problems in which modern tools of analysis have proved useful. It is useful to graduates and researchers in both hyperbolic PDEs and compressible fluid dynamics.
Finite Difference Methods for Ordinary and Partial Differential Equations
Author: Randall J. LeVeque
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356
Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356
Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Partial Differential Equations
Author: Walter A. Strauss
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467
Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467
Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Finite Volume Methods for Hyperbolic Problems
Author: Randall J. LeVeque
Publisher: Cambridge University Press
ISBN: 1139434187
Category : Mathematics
Languages : en
Pages : 582
Book Description
This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.
Publisher: Cambridge University Press
ISBN: 1139434187
Category : Mathematics
Languages : en
Pages : 582
Book Description
This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.
Peridynamic Differential Operator for Numerical Analysis
Author: Erdogan Madenci
Publisher: Springer
ISBN: 3030026477
Category : Science
Languages : en
Pages : 287
Book Description
This book introduces the peridynamic (PD) differential operator, which enables the nonlocal form of local differentiation. PD is a bridge between differentiation and integration. It provides the computational solution of complex field equations and evaluation of derivatives of smooth or scattered data in the presence of discontinuities. PD also serves as a natural filter to smooth noisy data and to recover missing data. This book starts with an overview of the PD concept, the derivation of the PD differential operator, its numerical implementation for the spatial and temporal derivatives, and the description of sources of error. The applications concern interpolation, regression, and smoothing of data, solutions to nonlinear ordinary differential equations, single- and multi-field partial differential equations and integro-differential equations. It describes the derivation of the weak form of PD Poisson’s and Navier’s equations for direct imposition of essential and natural boundary conditions. It also presents an alternative approach for the PD differential operator based on the least squares minimization. Peridynamic Differential Operator for Numerical Analysis is suitable for both advanced-level student and researchers, demonstrating how to construct solutions to all of the applications. Provided as supplementary material, solution algorithms for a set of selected applications are available for more details in the numerical implementation.
Publisher: Springer
ISBN: 3030026477
Category : Science
Languages : en
Pages : 287
Book Description
This book introduces the peridynamic (PD) differential operator, which enables the nonlocal form of local differentiation. PD is a bridge between differentiation and integration. It provides the computational solution of complex field equations and evaluation of derivatives of smooth or scattered data in the presence of discontinuities. PD also serves as a natural filter to smooth noisy data and to recover missing data. This book starts with an overview of the PD concept, the derivation of the PD differential operator, its numerical implementation for the spatial and temporal derivatives, and the description of sources of error. The applications concern interpolation, regression, and smoothing of data, solutions to nonlinear ordinary differential equations, single- and multi-field partial differential equations and integro-differential equations. It describes the derivation of the weak form of PD Poisson’s and Navier’s equations for direct imposition of essential and natural boundary conditions. It also presents an alternative approach for the PD differential operator based on the least squares minimization. Peridynamic Differential Operator for Numerical Analysis is suitable for both advanced-level student and researchers, demonstrating how to construct solutions to all of the applications. Provided as supplementary material, solution algorithms for a set of selected applications are available for more details in the numerical implementation.
Implementing Spectral Methods for Partial Differential Equations
Author: David A. Kopriva
Publisher: Springer Science & Business Media
ISBN: 9048122619
Category : Mathematics
Languages : en
Pages : 397
Book Description
This book explains how to solve partial differential equations numerically using single and multidomain spectral methods. It shows how only a few fundamental algorithms form the building blocks of any spectral code, even for problems with complex geometries.
Publisher: Springer Science & Business Media
ISBN: 9048122619
Category : Mathematics
Languages : en
Pages : 397
Book Description
This book explains how to solve partial differential equations numerically using single and multidomain spectral methods. It shows how only a few fundamental algorithms form the building blocks of any spectral code, even for problems with complex geometries.
Partial Differential Equations: Modeling, Analysis and Numerical Approximation
Author: Hervé Le Dret
Publisher: Birkhäuser
ISBN: 3319270672
Category : Mathematics
Languages : en
Pages : 403
Book Description
This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems.
Publisher: Birkhäuser
ISBN: 3319270672
Category : Mathematics
Languages : en
Pages : 403
Book Description
This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems.
Hyperbolic Partial Differential Equations and Geometric Optics
Author: Jeffrey Rauch
Publisher: American Mathematical Soc.
ISBN: 0821872915
Category : Mathematics
Languages : en
Pages : 386
Book Description
This book introduces graduate students and researchers in mathematics and the sciences to the multifaceted subject of the equations of hyperbolic type, which are used, in particular, to describe propagation of waves at finite speed. Among the topics carefully presented in the book are nonlinear geometric optics, the asymptotic analysis of short wavelength solutions, and nonlinear interaction of such waves. Studied in detail are the damping of waves, resonance, dispersive decay, and solutions to the compressible Euler equations with dense oscillations created by resonant interactions. Many fundamental results are presented for the first time in a textbook format. In addition to dense oscillations, these include the treatment of precise speed of propagation and the existence and stability questions for the three wave interaction equations. One of the strengths of this book is its careful motivation of ideas and proofs, showing how they evolve from related, simpler cases. This makes the book quite useful to both researchers and graduate students interested in hyperbolic partial differential equations. Numerous exercises encourage active participation of the reader. The author is a professor of mathematics at the University of Michigan. A recognized expert in partial differential equations, he has made important contributions to the transformation of three areas of hyperbolic partial differential equations: nonlinear microlocal analysis, the control of waves, and nonlinear geometric optics.
Publisher: American Mathematical Soc.
ISBN: 0821872915
Category : Mathematics
Languages : en
Pages : 386
Book Description
This book introduces graduate students and researchers in mathematics and the sciences to the multifaceted subject of the equations of hyperbolic type, which are used, in particular, to describe propagation of waves at finite speed. Among the topics carefully presented in the book are nonlinear geometric optics, the asymptotic analysis of short wavelength solutions, and nonlinear interaction of such waves. Studied in detail are the damping of waves, resonance, dispersive decay, and solutions to the compressible Euler equations with dense oscillations created by resonant interactions. Many fundamental results are presented for the first time in a textbook format. In addition to dense oscillations, these include the treatment of precise speed of propagation and the existence and stability questions for the three wave interaction equations. One of the strengths of this book is its careful motivation of ideas and proofs, showing how they evolve from related, simpler cases. This makes the book quite useful to both researchers and graduate students interested in hyperbolic partial differential equations. Numerous exercises encourage active participation of the reader. The author is a professor of mathematics at the University of Michigan. A recognized expert in partial differential equations, he has made important contributions to the transformation of three areas of hyperbolic partial differential equations: nonlinear microlocal analysis, the control of waves, and nonlinear geometric optics.
Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors
Author: Yuming Qin
Publisher: Springer Science & Business Media
ISBN: 3764388145
Category : Mathematics
Languages : en
Pages : 472
Book Description
This book presents recent results concerning the global existence in time, the large-time behavior, decays of solutions and the existence of global attractors for nonlinear parabolic-hyperbolic coupled systems of evolutionary partial differential equations.
Publisher: Springer Science & Business Media
ISBN: 3764388145
Category : Mathematics
Languages : en
Pages : 472
Book Description
This book presents recent results concerning the global existence in time, the large-time behavior, decays of solutions and the existence of global attractors for nonlinear parabolic-hyperbolic coupled systems of evolutionary partial differential equations.
Partial Differential Equations
Author: Victor Henner
Publisher: CRC Press
ISBN: 0429804415
Category : Mathematics
Languages : en
Pages : 462
Book Description
Partial Differential Equations: Analytical Methods and Applications covers all the basic topics of a Partial Differential Equations (PDE) course for undergraduate students or a beginners’ course for graduate students. It provides qualitative physical explanation of mathematical results while maintaining the expected level of it rigor. This text introduces and promotes practice of necessary problem-solving skills. The presentation is concise and friendly to the reader. The "teaching-by-examples" approach provides numerous carefully chosen examples that guide step-by-step learning of concepts and techniques. Fourier series, Sturm-Liouville problem, Fourier transform, and Laplace transform are included. The book’s level of presentation and structure is well suited for use in engineering, physics and applied mathematics courses. Highlights: Offers a complete first course on PDEs The text’s flexible structure promotes varied syllabi for courses Written with a teach-by-example approach which offers numerous examples and applications Includes additional topics such as the Sturm-Liouville problem, Fourier and Laplace transforms, and special functions The text’s graphical material makes excellent use of modern software packages Features numerous examples and applications which are suitable for readers studying the subject remotely or independently
Publisher: CRC Press
ISBN: 0429804415
Category : Mathematics
Languages : en
Pages : 462
Book Description
Partial Differential Equations: Analytical Methods and Applications covers all the basic topics of a Partial Differential Equations (PDE) course for undergraduate students or a beginners’ course for graduate students. It provides qualitative physical explanation of mathematical results while maintaining the expected level of it rigor. This text introduces and promotes practice of necessary problem-solving skills. The presentation is concise and friendly to the reader. The "teaching-by-examples" approach provides numerous carefully chosen examples that guide step-by-step learning of concepts and techniques. Fourier series, Sturm-Liouville problem, Fourier transform, and Laplace transform are included. The book’s level of presentation and structure is well suited for use in engineering, physics and applied mathematics courses. Highlights: Offers a complete first course on PDEs The text’s flexible structure promotes varied syllabi for courses Written with a teach-by-example approach which offers numerous examples and applications Includes additional topics such as the Sturm-Liouville problem, Fourier and Laplace transforms, and special functions The text’s graphical material makes excellent use of modern software packages Features numerous examples and applications which are suitable for readers studying the subject remotely or independently