Author: Raf Cluckers
Publisher: Cambridge University Press
ISBN: 1139501739
Category : Mathematics
Languages : en
Pages : 263
Book Description
The development of Maxim Kontsevich's initial ideas on motivic integration has unexpectedly influenced many other areas of mathematics, ranging from the Langlands program over harmonic analysis, to non-Archimedean analysis, singularity theory and birational geometry. This book assembles the different theories of motivic integration and their applications for the first time, allowing readers to compare different approaches and assess their individual strengths. All of the necessary background is provided to make the book accessible to graduate students and researchers from algebraic geometry, model theory and number theory. Applications in several areas are included so that readers can see motivic integration at work in other domains. In a rapidly-evolving area of research this book will prove invaluable. This second volume discusses various applications of non-Archimedean geometry, model theory and motivic integration and the interactions between these domains.
Motivic Integration and its Interactions with Model Theory and Non-Archimedean Geometry: Volume 2
Author: Raf Cluckers
Publisher: Cambridge University Press
ISBN: 1139501739
Category : Mathematics
Languages : en
Pages : 263
Book Description
The development of Maxim Kontsevich's initial ideas on motivic integration has unexpectedly influenced many other areas of mathematics, ranging from the Langlands program over harmonic analysis, to non-Archimedean analysis, singularity theory and birational geometry. This book assembles the different theories of motivic integration and their applications for the first time, allowing readers to compare different approaches and assess their individual strengths. All of the necessary background is provided to make the book accessible to graduate students and researchers from algebraic geometry, model theory and number theory. Applications in several areas are included so that readers can see motivic integration at work in other domains. In a rapidly-evolving area of research this book will prove invaluable. This second volume discusses various applications of non-Archimedean geometry, model theory and motivic integration and the interactions between these domains.
Publisher: Cambridge University Press
ISBN: 1139501739
Category : Mathematics
Languages : en
Pages : 263
Book Description
The development of Maxim Kontsevich's initial ideas on motivic integration has unexpectedly influenced many other areas of mathematics, ranging from the Langlands program over harmonic analysis, to non-Archimedean analysis, singularity theory and birational geometry. This book assembles the different theories of motivic integration and their applications for the first time, allowing readers to compare different approaches and assess their individual strengths. All of the necessary background is provided to make the book accessible to graduate students and researchers from algebraic geometry, model theory and number theory. Applications in several areas are included so that readers can see motivic integration at work in other domains. In a rapidly-evolving area of research this book will prove invaluable. This second volume discusses various applications of non-Archimedean geometry, model theory and motivic integration and the interactions between these domains.
Motivic Integration and Its Interactions with Model Theory and Non-Archimedean Geometry:
Author: Raf Cluckers
Publisher:
ISBN: 9781139145350
Category : MATHEMATICS
Languages : en
Pages : 264
Book Description
An overview of different theories of motivic integration and their applications.
Publisher:
ISBN: 9781139145350
Category : MATHEMATICS
Languages : en
Pages : 264
Book Description
An overview of different theories of motivic integration and their applications.
Equivalents of the Riemann Hypothesis: Volume 2, Analytic Equivalents
Author: Kevin Broughan
Publisher: Cambridge University Press
ISBN: 1108195431
Category : Mathematics
Languages : en
Pages : 514
Book Description
The Riemann hypothesis (RH) is perhaps the most important outstanding problem in mathematics. This two-volume text presents the main known equivalents to RH using analytic and computational methods. The book is gentle on the reader with definitions repeated, proofs split into logical sections, and graphical descriptions of the relations between different results. It also includes extensive tables, supplementary computational tools, and open problems suitable for research. Accompanying software is free to download. These books will interest mathematicians who wish to update their knowledge, graduate and senior undergraduate students seeking accessible research problems in number theory, and others who want to explore and extend results computationally. Each volume can be read independently. Volume 1 presents classical and modern arithmetic equivalents to RH, with some analytic methods. Volume 2 covers equivalences with a strong analytic orientation, supported by an extensive set of appendices containing fully developed proofs.
Publisher: Cambridge University Press
ISBN: 1108195431
Category : Mathematics
Languages : en
Pages : 514
Book Description
The Riemann hypothesis (RH) is perhaps the most important outstanding problem in mathematics. This two-volume text presents the main known equivalents to RH using analytic and computational methods. The book is gentle on the reader with definitions repeated, proofs split into logical sections, and graphical descriptions of the relations between different results. It also includes extensive tables, supplementary computational tools, and open problems suitable for research. Accompanying software is free to download. These books will interest mathematicians who wish to update their knowledge, graduate and senior undergraduate students seeking accessible research problems in number theory, and others who want to explore and extend results computationally. Each volume can be read independently. Volume 1 presents classical and modern arithmetic equivalents to RH, with some analytic methods. Volume 2 covers equivalences with a strong analytic orientation, supported by an extensive set of appendices containing fully developed proofs.
Handbook of Geometry and Topology of Singularities IV
Author: José Luis Cisneros-Molina
Publisher: Springer Nature
ISBN: 3031319257
Category : Mathematics
Languages : en
Pages : 622
Book Description
This is the fourth volume of the Handbook of Geometry and Topology of Singularities, a series that aims to provide an accessible account of the state of the art of the subject, its frontiers, and its interactions with other areas of research. This volume consists of twelve chapters which provide an in-depth and reader-friendly survey of various important aspects of singularity theory. Some of these complement topics previously explored in volumes I to III. Amongst the topics studied in this volume are the Nash blow up, the space of arcs in algebraic varieties, determinantal singularities, Lipschitz geometry, indices of vector fields and 1-forms, motivic characteristic classes, the Hilbert-Samuel multiplicity and comparison theorems that spring from the classical De Rham complex. Singularities are ubiquitous in mathematics and science in general. Singularity theory is a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other subjects. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.
Publisher: Springer Nature
ISBN: 3031319257
Category : Mathematics
Languages : en
Pages : 622
Book Description
This is the fourth volume of the Handbook of Geometry and Topology of Singularities, a series that aims to provide an accessible account of the state of the art of the subject, its frontiers, and its interactions with other areas of research. This volume consists of twelve chapters which provide an in-depth and reader-friendly survey of various important aspects of singularity theory. Some of these complement topics previously explored in volumes I to III. Amongst the topics studied in this volume are the Nash blow up, the space of arcs in algebraic varieties, determinantal singularities, Lipschitz geometry, indices of vector fields and 1-forms, motivic characteristic classes, the Hilbert-Samuel multiplicity and comparison theorems that spring from the classical De Rham complex. Singularities are ubiquitous in mathematics and science in general. Singularity theory is a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other subjects. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.
Model Theory in Algebra, Analysis and Arithmetic
Author: Lou van den Dries
Publisher: Springer
ISBN: 3642549365
Category : Mathematics
Languages : en
Pages : 201
Book Description
Presenting recent developments and applications, the book focuses on four main topics in current model theory: 1) the model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; and 4) the model theory of real and complex exponentiation. Young researchers in model theory will particularly benefit from the book, as will more senior researchers in other branches of mathematics.
Publisher: Springer
ISBN: 3642549365
Category : Mathematics
Languages : en
Pages : 201
Book Description
Presenting recent developments and applications, the book focuses on four main topics in current model theory: 1) the model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; and 4) the model theory of real and complex exponentiation. Young researchers in model theory will particularly benefit from the book, as will more senior researchers in other branches of mathematics.
Tropical and Non-Archimedean Geometry
Author: Omid Amini
Publisher: American Mathematical Soc.
ISBN: 1470410214
Category : Mathematics
Languages : en
Pages : 274
Book Description
Over the past decade, it has become apparent that tropical geometry and non-Archimedean geometry should be studied in tandem; each subject has a great deal to say about the other. This volume is a collection of articles dedicated to one or both of these disciplines. Some of the articles are based, at least in part, on the authors' lectures at the 2011 Bellairs Workshop in Number Theory, held from May 6-13, 2011, at the Bellairs Research Institute, Holetown, Barbados. Lecture topics covered in this volume include polyhedral structures on tropical varieties, the structure theory of non-Archimedean curves (algebraic, analytic, tropical, and formal), uniformisation theory for non-Archimedean curves and abelian varieties, and applications to Diophantine geometry. Additional articles selected for inclusion in this volume represent other facets of current research and illuminate connections between tropical geometry, non-Archimedean geometry, toric geometry, algebraic graph theory, and algorithmic aspects of systems of polynomial equations.
Publisher: American Mathematical Soc.
ISBN: 1470410214
Category : Mathematics
Languages : en
Pages : 274
Book Description
Over the past decade, it has become apparent that tropical geometry and non-Archimedean geometry should be studied in tandem; each subject has a great deal to say about the other. This volume is a collection of articles dedicated to one or both of these disciplines. Some of the articles are based, at least in part, on the authors' lectures at the 2011 Bellairs Workshop in Number Theory, held from May 6-13, 2011, at the Bellairs Research Institute, Holetown, Barbados. Lecture topics covered in this volume include polyhedral structures on tropical varieties, the structure theory of non-Archimedean curves (algebraic, analytic, tropical, and formal), uniformisation theory for non-Archimedean curves and abelian varieties, and applications to Diophantine geometry. Additional articles selected for inclusion in this volume represent other facets of current research and illuminate connections between tropical geometry, non-Archimedean geometry, toric geometry, algebraic graph theory, and algorithmic aspects of systems of polynomial equations.
Polynomials and the mod 2 Steenrod Algebra: Volume 2, Representations of GL (n,F2)
Author: Grant Walker
Publisher: Cambridge University Press
ISBN: 1108355927
Category : Mathematics
Languages : en
Pages : 381
Book Description
This is the first book to link the mod 2 Steenrod algebra, a classical object of study in algebraic topology, with modular representations of matrix groups over the field F of two elements. The link is provided through a detailed study of Peterson's `hit problem' concerning the action of the Steenrod algebra on polynomials, which remains unsolved except in special cases. The topics range from decompositions of integers as sums of 'powers of 2 minus 1', to Hopf algebras and the Steinberg representation of GL(n, F). Volume 1 develops the structure of the Steenrod algebra from an algebraic viewpoint and can be used as a graduate-level textbook. Volume 2 broadens the discussion to include modular representations of matrix groups.
Publisher: Cambridge University Press
ISBN: 1108355927
Category : Mathematics
Languages : en
Pages : 381
Book Description
This is the first book to link the mod 2 Steenrod algebra, a classical object of study in algebraic topology, with modular representations of matrix groups over the field F of two elements. The link is provided through a detailed study of Peterson's `hit problem' concerning the action of the Steenrod algebra on polynomials, which remains unsolved except in special cases. The topics range from decompositions of integers as sums of 'powers of 2 minus 1', to Hopf algebras and the Steinberg representation of GL(n, F). Volume 1 develops the structure of the Steenrod algebra from an algebraic viewpoint and can be used as a graduate-level textbook. Volume 2 broadens the discussion to include modular representations of matrix groups.
Stacks Project Expository Collection
Author: Pieter Belmans
Publisher: Cambridge University Press
ISBN: 1009063286
Category : Mathematics
Languages : en
Pages : 308
Book Description
The Stacks Project Expository Collection (SPEC) compiles expository articles in advanced algebraic geometry, intended to bring graduate students and researchers up to speed on recent developments in the geometry of algebraic spaces and algebraic stacks. The articles in the text make explicit in modern language many results, proofs, and examples that were previously only implicit, incomplete, or expressed in classical terms in the literature. Where applicable this is done by explicitly referring to the Stacks project for preliminary results. Topics include the construction and properties of important moduli problems in algebraic geometry (such as the Deligne–Mumford compactification of the moduli of curves, the Picard functor, or moduli of semistable vector bundles and sheaves), and arithmetic questions for fields and algebraic spaces.
Publisher: Cambridge University Press
ISBN: 1009063286
Category : Mathematics
Languages : en
Pages : 308
Book Description
The Stacks Project Expository Collection (SPEC) compiles expository articles in advanced algebraic geometry, intended to bring graduate students and researchers up to speed on recent developments in the geometry of algebraic spaces and algebraic stacks. The articles in the text make explicit in modern language many results, proofs, and examples that were previously only implicit, incomplete, or expressed in classical terms in the literature. Where applicable this is done by explicitly referring to the Stacks project for preliminary results. Topics include the construction and properties of important moduli problems in algebraic geometry (such as the Deligne–Mumford compactification of the moduli of curves, the Picard functor, or moduli of semistable vector bundles and sheaves), and arithmetic questions for fields and algebraic spaces.
Automorphic Forms and Galois Representations: Volume 2
Author: Fred Diamond
Publisher: Cambridge University Press
ISBN: 1316062341
Category : Mathematics
Languages : en
Pages : 387
Book Description
Automorphic forms and Galois representations have played a central role in the development of modern number theory, with the former coming to prominence via the celebrated Langlands program and Wiles' proof of Fermat's Last Theorem. This two-volume collection arose from the 94th LMS-EPSRC Durham Symposium on 'Automorphic Forms and Galois Representations' in July 2011, the aim of which was to explore recent developments in this area. The expository articles and research papers across the two volumes reflect recent interest in p-adic methods in number theory and representation theory, as well as recent progress on topics from anabelian geometry to p-adic Hodge theory and the Langlands program. The topics covered in volume two include curves and vector bundles in p-adic Hodge theory, associators, Shimura varieties, the birational section conjecture, and other topics of contemporary interest.
Publisher: Cambridge University Press
ISBN: 1316062341
Category : Mathematics
Languages : en
Pages : 387
Book Description
Automorphic forms and Galois representations have played a central role in the development of modern number theory, with the former coming to prominence via the celebrated Langlands program and Wiles' proof of Fermat's Last Theorem. This two-volume collection arose from the 94th LMS-EPSRC Durham Symposium on 'Automorphic Forms and Galois Representations' in July 2011, the aim of which was to explore recent developments in this area. The expository articles and research papers across the two volumes reflect recent interest in p-adic methods in number theory and representation theory, as well as recent progress on topics from anabelian geometry to p-adic Hodge theory and the Langlands program. The topics covered in volume two include curves and vector bundles in p-adic Hodge theory, associators, Shimura varieties, the birational section conjecture, and other topics of contemporary interest.
$p$-Adic Analysis, Arithmetic and Singularities
Author: Carlos Galindo
Publisher: American Mathematical Society
ISBN: 1470467798
Category : Mathematics
Languages : en
Pages : 311
Book Description
This volume contains the proceedings of the 2019 Lluís A. Santaló Summer School on $p$-Adic Analysis, Arithmetic and Singularities, which was held from June 24–28, 2019, at the Universidad Internacional Menéndez Pelayo, Santander, Spain. The main purpose of the book is to present and analyze different incarnations of the local zeta functions and their multiple connections in mathematics and theoretical physics. Local zeta functions are ubiquitous objects in mathematics and theoretical physics. At the mathematical level, local zeta functions contain geometry and arithmetic information about the set of zeros defined by a finite number of polynomials. In terms of applications in theoretical physics, these functions play a central role in the regularization of Feynman amplitudes and Koba-Nielsen-type string amplitudes, among other applications. This volume provides a gentle introduction to a very active area of research that lies at the intersection of number theory, $p$-adic analysis, algebraic geometry, singularity theory, and theoretical physics. Specifically, the book introduces $p$-adic analysis, the theory of Archimedean, $p$-adic, and motivic zeta functions, singularities of plane curves and their Poincaré series, among other similar topics. It also contains original contributions in the aforementioned areas written by renowned specialists. This book is an important reference for students and experts who want to delve quickly into the area of local zeta functions and their many connections in mathematics and theoretical physics.
Publisher: American Mathematical Society
ISBN: 1470467798
Category : Mathematics
Languages : en
Pages : 311
Book Description
This volume contains the proceedings of the 2019 Lluís A. Santaló Summer School on $p$-Adic Analysis, Arithmetic and Singularities, which was held from June 24–28, 2019, at the Universidad Internacional Menéndez Pelayo, Santander, Spain. The main purpose of the book is to present and analyze different incarnations of the local zeta functions and their multiple connections in mathematics and theoretical physics. Local zeta functions are ubiquitous objects in mathematics and theoretical physics. At the mathematical level, local zeta functions contain geometry and arithmetic information about the set of zeros defined by a finite number of polynomials. In terms of applications in theoretical physics, these functions play a central role in the regularization of Feynman amplitudes and Koba-Nielsen-type string amplitudes, among other applications. This volume provides a gentle introduction to a very active area of research that lies at the intersection of number theory, $p$-adic analysis, algebraic geometry, singularity theory, and theoretical physics. Specifically, the book introduces $p$-adic analysis, the theory of Archimedean, $p$-adic, and motivic zeta functions, singularities of plane curves and their Poincaré series, among other similar topics. It also contains original contributions in the aforementioned areas written by renowned specialists. This book is an important reference for students and experts who want to delve quickly into the area of local zeta functions and their many connections in mathematics and theoretical physics.