Author: Tarik Uzunović
Publisher: CRC Press
ISBN: 0429554486
Category : Technology & Engineering
Languages : en
Pages : 191
Book Description
This book is concerned with the development of design techniques for controlling motion of mechanical systems which are employed to execute certain tasks acting collaboratively. The book introduces unified control design procedure for functionally related systems. The controllers for many different tasks in motion control can be successfully designed by applying the proposed simple procedure. The book gives an overview of the control methods appearing in the motion control area and the detailed design procedures for the class of systems that are required to execute certain task together. Tasks can generally be divided in their components, denoted as functions in the book. It is shown how dynamics of those tasks can be described. Based on the presented description, several control methods were discussed. Applicability of the introduced control design approach was demonstrated in subsequent chapters for various tasks.
Motion Control of Functionally Related Systems
Author: Tarik Uzunović
Publisher: CRC Press
ISBN: 0429554486
Category : Technology & Engineering
Languages : en
Pages : 191
Book Description
This book is concerned with the development of design techniques for controlling motion of mechanical systems which are employed to execute certain tasks acting collaboratively. The book introduces unified control design procedure for functionally related systems. The controllers for many different tasks in motion control can be successfully designed by applying the proposed simple procedure. The book gives an overview of the control methods appearing in the motion control area and the detailed design procedures for the class of systems that are required to execute certain task together. Tasks can generally be divided in their components, denoted as functions in the book. It is shown how dynamics of those tasks can be described. Based on the presented description, several control methods were discussed. Applicability of the introduced control design approach was demonstrated in subsequent chapters for various tasks.
Publisher: CRC Press
ISBN: 0429554486
Category : Technology & Engineering
Languages : en
Pages : 191
Book Description
This book is concerned with the development of design techniques for controlling motion of mechanical systems which are employed to execute certain tasks acting collaboratively. The book introduces unified control design procedure for functionally related systems. The controllers for many different tasks in motion control can be successfully designed by applying the proposed simple procedure. The book gives an overview of the control methods appearing in the motion control area and the detailed design procedures for the class of systems that are required to execute certain task together. Tasks can generally be divided in their components, denoted as functions in the book. It is shown how dynamics of those tasks can be described. Based on the presented description, several control methods were discussed. Applicability of the introduced control design approach was demonstrated in subsequent chapters for various tasks.
Motion Control Systems
Author: Asif Sabanovic
Publisher: John Wiley & Sons
ISBN: 0470828293
Category : Science
Languages : en
Pages : 337
Book Description
Motion Control Systems is concerned with design methods that support the never-ending requirements for faster and more accurate control of mechanical motion. The book presents material that is fundamental, yet at the same time discusses the solution of complex problems in motion control systems. Methods presented in the book are based on the authors' original research results. Mathematical complexities are kept to a required minimum so that practicing engineers as well as students with a limited background in control may use the book. It is unique in presenting know-how accumulated through work on very diverse problems into a comprehensive unified approach suitable for application in high demanding, high-tech products. Major issues covered include motion control ranging from simple trajectory tracking and force control, to topics related to haptics, bilateral control with and without delay in measurement and control channels, as well as control of nonredundant and redundant multibody systems. Provides a consistent unified theoretical framework for motion control design Offers graduated increase in complexity and reinforcement throughout the book Gives detailed explanation of underlying similarities and specifics in motion control Unified treatment of single degree-of-freedom and multibody systems Explains the fundamentals through implementation examples Based on classroom-tested materials and the authors' original research work Written by the leading researchers in sliding mode control (SMC) and disturbance observer (DOB) Accompanying lecture notes for instructors Simulink and MATLAB® codes available for readers to download Motion Control Systemsis an ideal textbook for a course on motion control or as a reference for post-graduates and researchers in robotics and mechatronics. Researchers and practicing engineers will also find the techniques helpful in designing mechanical motion systems.
Publisher: John Wiley & Sons
ISBN: 0470828293
Category : Science
Languages : en
Pages : 337
Book Description
Motion Control Systems is concerned with design methods that support the never-ending requirements for faster and more accurate control of mechanical motion. The book presents material that is fundamental, yet at the same time discusses the solution of complex problems in motion control systems. Methods presented in the book are based on the authors' original research results. Mathematical complexities are kept to a required minimum so that practicing engineers as well as students with a limited background in control may use the book. It is unique in presenting know-how accumulated through work on very diverse problems into a comprehensive unified approach suitable for application in high demanding, high-tech products. Major issues covered include motion control ranging from simple trajectory tracking and force control, to topics related to haptics, bilateral control with and without delay in measurement and control channels, as well as control of nonredundant and redundant multibody systems. Provides a consistent unified theoretical framework for motion control design Offers graduated increase in complexity and reinforcement throughout the book Gives detailed explanation of underlying similarities and specifics in motion control Unified treatment of single degree-of-freedom and multibody systems Explains the fundamentals through implementation examples Based on classroom-tested materials and the authors' original research work Written by the leading researchers in sliding mode control (SMC) and disturbance observer (DOB) Accompanying lecture notes for instructors Simulink and MATLAB® codes available for readers to download Motion Control Systemsis an ideal textbook for a course on motion control or as a reference for post-graduates and researchers in robotics and mechatronics. Researchers and practicing engineers will also find the techniques helpful in designing mechanical motion systems.
Variable Gain Control and Its Applications in Energy Conversion
Author: Chenghui Zhang
Publisher: CRC Press
ISBN: 1000879526
Category : Technology & Engineering
Languages : en
Pages : 191
Book Description
The variable gain control method is a new construction technique for the control of nonlinear systems. By properly conducting state transformation that depends on the variable gains, the control design problem of nonlinear systems can be transformed into a gain construction problem, thus effectively avoiding the tedious iterative design procedure. Different from the classical backstepping method and forwarding design method, the structure of variable gain control is simpler in the sense that fewer design parameters are required, facilitating the improvement of system control performance. To highlight the learning, research, and promotion of variable gain control, Variable Gain Control and Its Applications in Energy Conversion is written based on the research results of peers at home and abroad and combining our latest research. This book presents innovative technologies for designing variable gain controllers for nonlinear systems. It systematically describes the origin and principles of variable gain control for nonlinear systems, focuses on the controller design and stability analysis, and reflects the latest research. In addition, variable gain control methods applied to energy conversion are also included. Discussion remarks are provided in each chapter highlighting new approaches and contributions to emphasize the novelty of the presented design and analysis methods. In addition, simulation results are given in each chapter to show the effectiveness of these methods. It can be used as a reference book or a textbook for students with some background in feedback control systems. Researchers, graduate students, and engineers in the fields of control, information, renewable energy generation, electrical engineering, mechanical engineering, applied mathematics, and others will benefit from this book.
Publisher: CRC Press
ISBN: 1000879526
Category : Technology & Engineering
Languages : en
Pages : 191
Book Description
The variable gain control method is a new construction technique for the control of nonlinear systems. By properly conducting state transformation that depends on the variable gains, the control design problem of nonlinear systems can be transformed into a gain construction problem, thus effectively avoiding the tedious iterative design procedure. Different from the classical backstepping method and forwarding design method, the structure of variable gain control is simpler in the sense that fewer design parameters are required, facilitating the improvement of system control performance. To highlight the learning, research, and promotion of variable gain control, Variable Gain Control and Its Applications in Energy Conversion is written based on the research results of peers at home and abroad and combining our latest research. This book presents innovative technologies for designing variable gain controllers for nonlinear systems. It systematically describes the origin and principles of variable gain control for nonlinear systems, focuses on the controller design and stability analysis, and reflects the latest research. In addition, variable gain control methods applied to energy conversion are also included. Discussion remarks are provided in each chapter highlighting new approaches and contributions to emphasize the novelty of the presented design and analysis methods. In addition, simulation results are given in each chapter to show the effectiveness of these methods. It can be used as a reference book or a textbook for students with some background in feedback control systems. Researchers, graduate students, and engineers in the fields of control, information, renewable energy generation, electrical engineering, mechanical engineering, applied mathematics, and others will benefit from this book.
DSP-Based Electromechanical Motion Control
Author: Hamid A. Toliyat
Publisher: CRC Press
ISBN: 0203486331
Category : Technology & Engineering
Languages : en
Pages : 359
Book Description
Although the programming and use of a Digital Signal Processor (DSP) may not be the most complex process, utilizing DSPs in applications such as motor control can be extremely challenging for the first-time user. DSP-Based Electromechanical Motion Control provides a general application guide for students and engineers who want to implement DSP-base
Publisher: CRC Press
ISBN: 0203486331
Category : Technology & Engineering
Languages : en
Pages : 359
Book Description
Although the programming and use of a Digital Signal Processor (DSP) may not be the most complex process, utilizing DSPs in applications such as motor control can be extremely challenging for the first-time user. DSP-Based Electromechanical Motion Control provides a general application guide for students and engineers who want to implement DSP-base
Nonlinear Pinning Control of Complex Dynamical Networks
Author: Edgar N. Sanchez
Publisher: CRC Press
ISBN: 1000415198
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
This book presents two nonlinear control strategies for complex dynamical networks. First, sliding-mode control is used, and then the inverse optimal control approach is employed. For both cases, model-based is considered in Chapter 3 and Chapter 5; then, Chapter 4 and Chapter 6 are based on determining a model for the unknow system using a recurrent neural network, using on-line extended Kalman filtering for learning. The book is organized in four sections. The first one covers mathematical preliminaries, with a brief review for complex networks, and the pinning methodology. Additionally, sliding-mode control and inverse optimal control are introduced. Neural network structures are also discussed along with a description of the high-order ones. The second section presents the analysis and simulation results for sliding-mode control for identical as well as non-identical nodes. The third section describes analysis and simulation results for inverse optimal control considering identical or non-identical nodes. Finally, the last section presents applications of these schemes, using gene regulatory networks and microgrids as examples.
Publisher: CRC Press
ISBN: 1000415198
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
This book presents two nonlinear control strategies for complex dynamical networks. First, sliding-mode control is used, and then the inverse optimal control approach is employed. For both cases, model-based is considered in Chapter 3 and Chapter 5; then, Chapter 4 and Chapter 6 are based on determining a model for the unknow system using a recurrent neural network, using on-line extended Kalman filtering for learning. The book is organized in four sections. The first one covers mathematical preliminaries, with a brief review for complex networks, and the pinning methodology. Additionally, sliding-mode control and inverse optimal control are introduced. Neural network structures are also discussed along with a description of the high-order ones. The second section presents the analysis and simulation results for sliding-mode control for identical as well as non-identical nodes. The third section describes analysis and simulation results for inverse optimal control considering identical or non-identical nodes. Finally, the last section presents applications of these schemes, using gene regulatory networks and microgrids as examples.
Optimal Event-Triggered Control Using Adaptive Dynamic Programming
Author: Sarangapani Jagannathan
Publisher: CRC Press
ISBN: 1040049168
Category : Technology & Engineering
Languages : en
Pages : 348
Book Description
Optimal Event-triggered Control using Adaptive Dynamic Programming discusses event triggered controller design which includes optimal control and event sampling design for linear and nonlinear dynamic systems including networked control systems (NCS) when the system dynamics are both known and uncertain. The NCS are a first step to realize cyber-physical systems (CPS) or industry 4.0 vision. The authors apply several powerful modern control techniques to the design of event-triggered controllers and derive event-trigger condition and demonstrate closed-loop stability. Detailed derivations, rigorous stability proofs, computer simulation examples, and downloadable MATLAB® codes are included for each case. The book begins by providing background on linear and nonlinear systems, NCS, networked imperfections, distributed systems, adaptive dynamic programming and optimal control, stability theory, and optimal adaptive event-triggered controller design in continuous-time and discrete-time for linear, nonlinear and distributed systems. It lays the foundation for reinforcement learning-based optimal adaptive controller use for infinite horizons. The text then: Introduces event triggered control of linear and nonlinear systems, describing the design of adaptive controllers for them Presents neural network-based optimal adaptive control and game theoretic formulation of linear and nonlinear systems enclosed by a communication network Addresses the stochastic optimal control of linear and nonlinear NCS by using neuro dynamic programming Explores optimal adaptive design for nonlinear two-player zero-sum games under communication constraints to solve optimal policy and event trigger condition Treats an event-sampled distributed linear and nonlinear systems to minimize transmission of state and control signals within the feedback loop via the communication network Covers several examples along the way and provides applications of event triggered control of robot manipulators, UAV and distributed joint optimal network scheduling and control design for wireless NCS/CPS in order to realize industry 4.0 vision An ideal textbook for senior undergraduate students, graduate students, university researchers, and practicing engineers, Optimal Event Triggered Control Design using Adaptive Dynamic Programming instills a solid understanding of neural network-based optimal controllers under event-sampling and how to build them so as to attain CPS or Industry 4.0 vision.
Publisher: CRC Press
ISBN: 1040049168
Category : Technology & Engineering
Languages : en
Pages : 348
Book Description
Optimal Event-triggered Control using Adaptive Dynamic Programming discusses event triggered controller design which includes optimal control and event sampling design for linear and nonlinear dynamic systems including networked control systems (NCS) when the system dynamics are both known and uncertain. The NCS are a first step to realize cyber-physical systems (CPS) or industry 4.0 vision. The authors apply several powerful modern control techniques to the design of event-triggered controllers and derive event-trigger condition and demonstrate closed-loop stability. Detailed derivations, rigorous stability proofs, computer simulation examples, and downloadable MATLAB® codes are included for each case. The book begins by providing background on linear and nonlinear systems, NCS, networked imperfections, distributed systems, adaptive dynamic programming and optimal control, stability theory, and optimal adaptive event-triggered controller design in continuous-time and discrete-time for linear, nonlinear and distributed systems. It lays the foundation for reinforcement learning-based optimal adaptive controller use for infinite horizons. The text then: Introduces event triggered control of linear and nonlinear systems, describing the design of adaptive controllers for them Presents neural network-based optimal adaptive control and game theoretic formulation of linear and nonlinear systems enclosed by a communication network Addresses the stochastic optimal control of linear and nonlinear NCS by using neuro dynamic programming Explores optimal adaptive design for nonlinear two-player zero-sum games under communication constraints to solve optimal policy and event trigger condition Treats an event-sampled distributed linear and nonlinear systems to minimize transmission of state and control signals within the feedback loop via the communication network Covers several examples along the way and provides applications of event triggered control of robot manipulators, UAV and distributed joint optimal network scheduling and control design for wireless NCS/CPS in order to realize industry 4.0 vision An ideal textbook for senior undergraduate students, graduate students, university researchers, and practicing engineers, Optimal Event Triggered Control Design using Adaptive Dynamic Programming instills a solid understanding of neural network-based optimal controllers under event-sampling and how to build them so as to attain CPS or Industry 4.0 vision.
Robust Formation Control for Multiple Unmanned Aerial Vehicles
Author: Hao Liu
Publisher: CRC Press
ISBN: 1000788504
Category : Technology & Engineering
Languages : en
Pages : 145
Book Description
This book is based on the authors’ recent research results on formation control problems, including time-varying formation, communication delays, fault-tolerant formation for multiple UAV systems with highly nonlinear and coupled, parameter uncertainties, and external disturbances. Differentiating from existing works, this book presents a robust optimal formation approach to designing distributed cooperative control laws for a group of UAVs, based on the linear quadratic regulator control method and the robust compensation theory. The proposed control method is composed of two parts: the nominal part to achieve desired tracking performance and the robust compensation part to restrain the influence of highly nonlinear and strongly coupled parameter uncertainties, and external disturbances on the global closed-loop control system. Furthermore, this book gives proof of their robust properties. The influence of communication delays and actuator fault tolerance can be restrained by the proposed robust formation control protocol, and the formation tracking errors can converge into a neighborhood of the origin bounded by a given constant in a finite time. Moreover, the book provides details about the practical application of the proposed method to design formation control systems for multiple quadrotors and tail-sitters. Additional features include a robust control method that is proposed to address the formation control problem for UAVs and theoretical and experimental research for the cooperative flight of the quadrotor UAV group and the tail-sitter UAV group. Robust Formation Control for Multiple Unmanned Aerial Vehicles is suitable for graduate students, researchers, and engineers in the system and control community, especially those engaged in the areas of robust control, UAV swarming, and multi-agent systems.
Publisher: CRC Press
ISBN: 1000788504
Category : Technology & Engineering
Languages : en
Pages : 145
Book Description
This book is based on the authors’ recent research results on formation control problems, including time-varying formation, communication delays, fault-tolerant formation for multiple UAV systems with highly nonlinear and coupled, parameter uncertainties, and external disturbances. Differentiating from existing works, this book presents a robust optimal formation approach to designing distributed cooperative control laws for a group of UAVs, based on the linear quadratic regulator control method and the robust compensation theory. The proposed control method is composed of two parts: the nominal part to achieve desired tracking performance and the robust compensation part to restrain the influence of highly nonlinear and strongly coupled parameter uncertainties, and external disturbances on the global closed-loop control system. Furthermore, this book gives proof of their robust properties. The influence of communication delays and actuator fault tolerance can be restrained by the proposed robust formation control protocol, and the formation tracking errors can converge into a neighborhood of the origin bounded by a given constant in a finite time. Moreover, the book provides details about the practical application of the proposed method to design formation control systems for multiple quadrotors and tail-sitters. Additional features include a robust control method that is proposed to address the formation control problem for UAVs and theoretical and experimental research for the cooperative flight of the quadrotor UAV group and the tail-sitter UAV group. Robust Formation Control for Multiple Unmanned Aerial Vehicles is suitable for graduate students, researchers, and engineers in the system and control community, especially those engaged in the areas of robust control, UAV swarming, and multi-agent systems.
Maneuverable Formation Control in Constrained Space
Author: Dongyu Li
Publisher: CRC Press
ISBN: 1040015468
Category : Technology & Engineering
Languages : en
Pages : 411
Book Description
Inspired by the community behaviors of animals and humans, cooperative control has been intensively studied by numerous researchers in recent years. Cooperative control aims to build a network system collectively driven by a global objective function in a distributed or centralized communication network and shows great application potential in a wide domain. From the perspective of cybernetics in network system cooperation, one of the main tasks is to design the formation control scheme for multiple intelligent unmanned systems, facilitating the achievements of hazardous missions – e.g., deep space exploration, cooperative military operation, and collaborative transportation. Various challenges in such real-world applications are driving the proposal of advanced formation control design, which is to be addressed to bring academic achievements into real industrial scenarios. This book extends the performance of formation control beyond classical dynamic or stationary geometric configurations, focusing on formation maneuverability that enables cooperative systems to keep suitable spacial configurations during agile maneuvers. This book embarks on an adventurous journey of maneuverable formation control in constrained space with limited resources, to accomplish the exploration of an unknown environment. The investigation of the real-world challenges, including model uncertainties, measurement inaccuracy, input saturation, output constraints, and spatial collision avoidance, brings the value of this book into the practical industry, rather than being limited to academics.
Publisher: CRC Press
ISBN: 1040015468
Category : Technology & Engineering
Languages : en
Pages : 411
Book Description
Inspired by the community behaviors of animals and humans, cooperative control has been intensively studied by numerous researchers in recent years. Cooperative control aims to build a network system collectively driven by a global objective function in a distributed or centralized communication network and shows great application potential in a wide domain. From the perspective of cybernetics in network system cooperation, one of the main tasks is to design the formation control scheme for multiple intelligent unmanned systems, facilitating the achievements of hazardous missions – e.g., deep space exploration, cooperative military operation, and collaborative transportation. Various challenges in such real-world applications are driving the proposal of advanced formation control design, which is to be addressed to bring academic achievements into real industrial scenarios. This book extends the performance of formation control beyond classical dynamic or stationary geometric configurations, focusing on formation maneuverability that enables cooperative systems to keep suitable spacial configurations during agile maneuvers. This book embarks on an adventurous journey of maneuverable formation control in constrained space with limited resources, to accomplish the exploration of an unknown environment. The investigation of the real-world challenges, including model uncertainties, measurement inaccuracy, input saturation, output constraints, and spatial collision avoidance, brings the value of this book into the practical industry, rather than being limited to academics.
Biomechanics and Motor Control
Author: Mark L. Latash
Publisher: Academic Press
ISBN: 012800519X
Category : Psychology
Languages : en
Pages : 428
Book Description
Biomechanics and Motor Control: Defining Central Concepts provides a thorough update to the rapidly evolving fields of biomechanics of human motion and motor control with research published in biology, psychology, physics, medicine, physical therapy, robotics, and engineering consistently breaking new ground. This book clarifies the meaning of the most frequently used terms, and consists of four parts, with part one covering biomechanical concepts, including joint torques, stiffness and stiffness-like measures, viscosity, damping and impedance, and mechanical work and energy. Other sections deal with neurophysiological concepts used in motor control, such as muscle tone, reflex, pre-programmed reactions, efferent copy, and central pattern generator, and central motor control concepts, including redundancy and abundance, synergy, equilibrium-point hypothesis, and motor program, and posture and prehension from the field of motor behavior. The book is organized to cover smaller concepts within the context of larger concepts. For example, internal models are covered in the chapter on motor programs. Major concepts are not only defined, but given context as to how research came to use the term in this manner. - Presents a unified approach to an interdisciplinary, fragmented area - Defines key terms for understanding - Identifies key theories, concepts, and applications across theoretical perspectives - Provides historical context for definitions and theory evolution
Publisher: Academic Press
ISBN: 012800519X
Category : Psychology
Languages : en
Pages : 428
Book Description
Biomechanics and Motor Control: Defining Central Concepts provides a thorough update to the rapidly evolving fields of biomechanics of human motion and motor control with research published in biology, psychology, physics, medicine, physical therapy, robotics, and engineering consistently breaking new ground. This book clarifies the meaning of the most frequently used terms, and consists of four parts, with part one covering biomechanical concepts, including joint torques, stiffness and stiffness-like measures, viscosity, damping and impedance, and mechanical work and energy. Other sections deal with neurophysiological concepts used in motor control, such as muscle tone, reflex, pre-programmed reactions, efferent copy, and central pattern generator, and central motor control concepts, including redundancy and abundance, synergy, equilibrium-point hypothesis, and motor program, and posture and prehension from the field of motor behavior. The book is organized to cover smaller concepts within the context of larger concepts. For example, internal models are covered in the chapter on motor programs. Major concepts are not only defined, but given context as to how research came to use the term in this manner. - Presents a unified approach to an interdisciplinary, fragmented area - Defines key terms for understanding - Identifies key theories, concepts, and applications across theoretical perspectives - Provides historical context for definitions and theory evolution
Intelligent Fault Diagnosis and Accommodation Control
Author: Sunan Huang
Publisher: CRC Press
ISBN: 0429558910
Category : Technology & Engineering
Languages : en
Pages : 291
Book Description
Control systems include many components, such as transducers, sensors, actuators and mechanical parts. These components are required to be operated under some specific conditions. However, due to prolonged operations or harsh operating environment, the properties of these devices may degrade to an unacceptable level, causing more regular fault occurrences. It is therefore necessary to diagnose faults and provide the fault-accommodation control which compensates for the fault of the component by substituting a configuration of redundant elements so that the system continues to operate satisfactorily. In this book, we present a result of several years of work in the area of fault diagnosis and fault-accommodation control. It aims at information estimate methods when faults occur. The book uses the model built from the plant or process, to detect and isolate failures, in contrast to traditional hardware or statistical technologies dealing with failures. It presents model-based learning and design technologies for fault detection, isolation and identification as well as fault-tolerant control. These models are also used to analyse the fault detectability and isolability conditions and discuss the stability of the closed-loop system. It is intended to report new technologies in the area of fault diagnosis, covering fault analysis and control strategies of design for various applications. The book addresses four main schemes: modelling of actuator or sensor faults; fault detection and isolation; fault identification, and fault reconfiguration (accommodation) control. It also covers application issues in the monitoring control of actuators, providing several interesting case studies for more application-oriented readers.
Publisher: CRC Press
ISBN: 0429558910
Category : Technology & Engineering
Languages : en
Pages : 291
Book Description
Control systems include many components, such as transducers, sensors, actuators and mechanical parts. These components are required to be operated under some specific conditions. However, due to prolonged operations or harsh operating environment, the properties of these devices may degrade to an unacceptable level, causing more regular fault occurrences. It is therefore necessary to diagnose faults and provide the fault-accommodation control which compensates for the fault of the component by substituting a configuration of redundant elements so that the system continues to operate satisfactorily. In this book, we present a result of several years of work in the area of fault diagnosis and fault-accommodation control. It aims at information estimate methods when faults occur. The book uses the model built from the plant or process, to detect and isolate failures, in contrast to traditional hardware or statistical technologies dealing with failures. It presents model-based learning and design technologies for fault detection, isolation and identification as well as fault-tolerant control. These models are also used to analyse the fault detectability and isolability conditions and discuss the stability of the closed-loop system. It is intended to report new technologies in the area of fault diagnosis, covering fault analysis and control strategies of design for various applications. The book addresses four main schemes: modelling of actuator or sensor faults; fault detection and isolation; fault identification, and fault reconfiguration (accommodation) control. It also covers application issues in the monitoring control of actuators, providing several interesting case studies for more application-oriented readers.