Author: Antoine Chambert-Loir
Publisher: Springer Nature
ISBN: 3030615952
Category : Mathematics
Languages : en
Pages : 466
Book Description
This book stems from lectures on commutative algebra for 4th-year university students at two French universities (Paris and Rennes). At that level, students have already followed a basic course in linear algebra and are essentially fluent with the language of vector spaces over fields. The topics introduced include arithmetic of rings, modules, especially principal ideal rings and the classification of modules over such rings, Galois theory, as well as an introduction to more advanced topics such as homological algebra, tensor products, and algebraic concepts involved in algebraic geometry. More than 300 exercises will allow the reader to deepen his understanding of the subject. The book also includes 11 historical vignettes about mathematicians who contributed to commutative algebra.
(Mostly) Commutative Algebra
Author: Antoine Chambert-Loir
Publisher: Springer Nature
ISBN: 3030615952
Category : Mathematics
Languages : en
Pages : 466
Book Description
This book stems from lectures on commutative algebra for 4th-year university students at two French universities (Paris and Rennes). At that level, students have already followed a basic course in linear algebra and are essentially fluent with the language of vector spaces over fields. The topics introduced include arithmetic of rings, modules, especially principal ideal rings and the classification of modules over such rings, Galois theory, as well as an introduction to more advanced topics such as homological algebra, tensor products, and algebraic concepts involved in algebraic geometry. More than 300 exercises will allow the reader to deepen his understanding of the subject. The book also includes 11 historical vignettes about mathematicians who contributed to commutative algebra.
Publisher: Springer Nature
ISBN: 3030615952
Category : Mathematics
Languages : en
Pages : 466
Book Description
This book stems from lectures on commutative algebra for 4th-year university students at two French universities (Paris and Rennes). At that level, students have already followed a basic course in linear algebra and are essentially fluent with the language of vector spaces over fields. The topics introduced include arithmetic of rings, modules, especially principal ideal rings and the classification of modules over such rings, Galois theory, as well as an introduction to more advanced topics such as homological algebra, tensor products, and algebraic concepts involved in algebraic geometry. More than 300 exercises will allow the reader to deepen his understanding of the subject. The book also includes 11 historical vignettes about mathematicians who contributed to commutative algebra.
Introduction To Commutative Algebra
Author: Michael F. Atiyah
Publisher: CRC Press
ISBN: 0429973268
Category : Mathematics
Languages : en
Pages : 140
Book Description
First Published in 2018. This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.
Publisher: CRC Press
ISBN: 0429973268
Category : Mathematics
Languages : en
Pages : 140
Book Description
First Published in 2018. This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.
Commutative Algebra
Author: David Eisenbud
Publisher: Springer Science & Business Media
ISBN: 1461253500
Category : Mathematics
Languages : en
Pages : 784
Book Description
This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.
Publisher: Springer Science & Business Media
ISBN: 1461253500
Category : Mathematics
Languages : en
Pages : 784
Book Description
This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.
Undergraduate Commutative Algebra
Author: Miles Reid
Publisher: Cambridge University Press
ISBN: 9780521458894
Category : Mathematics
Languages : en
Pages : 172
Book Description
Commutative algebra is at the crossroads of algebra, number theory and algebraic geometry. This textbook is affordable and clearly illustrated, and is intended for advanced undergraduate or beginning graduate students with some previous experience of rings and fields. Alongside standard algebraic notions such as generators of modules and the ascending chain condition, the book develops in detail the geometric view of a commutative ring as the ring of functions on a space. The starting point is the Nullstellensatz, which provides a close link between the geometry of a variety V and the algebra of its coordinate ring A=k[V]; however, many of the geometric ideas arising from varieties apply also to fairly general rings. The final chapter relates the material of the book to more advanced topics in commutative algebra and algebraic geometry. It includes an account of some famous 'pathological' examples of Akizuki and Nagata, and a brief but thought-provoking essay on the changing position of abstract algebra in today's world.
Publisher: Cambridge University Press
ISBN: 9780521458894
Category : Mathematics
Languages : en
Pages : 172
Book Description
Commutative algebra is at the crossroads of algebra, number theory and algebraic geometry. This textbook is affordable and clearly illustrated, and is intended for advanced undergraduate or beginning graduate students with some previous experience of rings and fields. Alongside standard algebraic notions such as generators of modules and the ascending chain condition, the book develops in detail the geometric view of a commutative ring as the ring of functions on a space. The starting point is the Nullstellensatz, which provides a close link between the geometry of a variety V and the algebra of its coordinate ring A=k[V]; however, many of the geometric ideas arising from varieties apply also to fairly general rings. The final chapter relates the material of the book to more advanced topics in commutative algebra and algebraic geometry. It includes an account of some famous 'pathological' examples of Akizuki and Nagata, and a brief but thought-provoking essay on the changing position of abstract algebra in today's world.
A Field Guide to Algebra
Author: Antoine Chambert-Loir
Publisher: Springer Science & Business Media
ISBN: 0387214283
Category : Mathematics
Languages : en
Pages : 199
Book Description
This book has a nonstandard choice of topics, including material on differential galois groups and proofs of the transcendence of e and pi. The author uses a conversational tone and has included a selection of stamps to accompany the text.
Publisher: Springer Science & Business Media
ISBN: 0387214283
Category : Mathematics
Languages : en
Pages : 199
Book Description
This book has a nonstandard choice of topics, including material on differential galois groups and proofs of the transcendence of e and pi. The author uses a conversational tone and has included a selection of stamps to accompany the text.
Introduction to Noncommutative Algebra
Author: Matej Brešar
Publisher: Springer
ISBN: 3319086936
Category : Mathematics
Languages : en
Pages : 227
Book Description
Providing an elementary introduction to noncommutative rings and algebras, this textbook begins with the classical theory of finite dimensional algebras. Only after this, modules, vector spaces over division rings, and tensor products are introduced and studied. This is followed by Jacobson's structure theory of rings. The final chapters treat free algebras, polynomial identities, and rings of quotients. Many of the results are not presented in their full generality. Rather, the emphasis is on clarity of exposition and simplicity of the proofs, with several being different from those in other texts on the subject. Prerequisites are kept to a minimum, and new concepts are introduced gradually and are carefully motivated. Introduction to Noncommutative Algebra is therefore accessible to a wide mathematical audience. It is, however, primarily intended for beginning graduate and advanced undergraduate students encountering noncommutative algebra for the first time.
Publisher: Springer
ISBN: 3319086936
Category : Mathematics
Languages : en
Pages : 227
Book Description
Providing an elementary introduction to noncommutative rings and algebras, this textbook begins with the classical theory of finite dimensional algebras. Only after this, modules, vector spaces over division rings, and tensor products are introduced and studied. This is followed by Jacobson's structure theory of rings. The final chapters treat free algebras, polynomial identities, and rings of quotients. Many of the results are not presented in their full generality. Rather, the emphasis is on clarity of exposition and simplicity of the proofs, with several being different from those in other texts on the subject. Prerequisites are kept to a minimum, and new concepts are introduced gradually and are carefully motivated. Introduction to Noncommutative Algebra is therefore accessible to a wide mathematical audience. It is, however, primarily intended for beginning graduate and advanced undergraduate students encountering noncommutative algebra for the first time.
Linear Algebra over Commutative Rings
Author: Bernard R. McDonald
Publisher: CRC Press
ISBN: 1000146464
Category : Mathematics
Languages : en
Pages : 563
Book Description
This monograph arose from lectures at the University of Oklahoma on topics related to linear algebra over commutative rings. It provides an introduction of matrix theory over commutative rings. The monograph discusses the structure theory of a projective module.
Publisher: CRC Press
ISBN: 1000146464
Category : Mathematics
Languages : en
Pages : 563
Book Description
This monograph arose from lectures at the University of Oklahoma on topics related to linear algebra over commutative rings. It provides an introduction of matrix theory over commutative rings. The monograph discusses the structure theory of a projective module.
Local Algebra
Author: Jean-Pierre Serre
Publisher: Springer Science & Business Media
ISBN: 3662042037
Category : Mathematics
Languages : en
Pages : 139
Book Description
This is an English translation of the now classic "Algbre Locale - Multiplicits" originally published by Springer as LNM 11. It gives a short account of the main theorems of commutative algebra, with emphasis on modules, homological methods and intersection multiplicities. Many modifications to the original French text have been made for this English edition, making the text easier to read, without changing its intended informal character.
Publisher: Springer Science & Business Media
ISBN: 3662042037
Category : Mathematics
Languages : en
Pages : 139
Book Description
This is an English translation of the now classic "Algbre Locale - Multiplicits" originally published by Springer as LNM 11. It gives a short account of the main theorems of commutative algebra, with emphasis on modules, homological methods and intersection multiplicities. Many modifications to the original French text have been made for this English edition, making the text easier to read, without changing its intended informal character.
Introduction to Commutative Algebra and Algebraic Geometry
Author: Ernst Kunz
Publisher: Springer Science & Business Media
ISBN: 1461459877
Category : Mathematics
Languages : en
Pages : 253
Book Description
Originally published in 1985, this classic textbook is an English translation of Einführung in die kommutative Algebra und algebraische Geometrie. As part of the Modern Birkhäuser Classics series, the publisher is proud to make Introduction to Commutative Algebra and Algebraic Geometry available to a wider audience. Aimed at students who have taken a basic course in algebra, the goal of the text is to present important results concerning the representation of algebraic varieties as intersections of the least possible number of hypersurfaces and—a closely related problem—with the most economical generation of ideals in Noetherian rings. Along the way, one encounters many basic concepts of commutative algebra and algebraic geometry and proves many facts which can then serve as a basic stock for a deeper study of these subjects.
Publisher: Springer Science & Business Media
ISBN: 1461459877
Category : Mathematics
Languages : en
Pages : 253
Book Description
Originally published in 1985, this classic textbook is an English translation of Einführung in die kommutative Algebra und algebraische Geometrie. As part of the Modern Birkhäuser Classics series, the publisher is proud to make Introduction to Commutative Algebra and Algebraic Geometry available to a wider audience. Aimed at students who have taken a basic course in algebra, the goal of the text is to present important results concerning the representation of algebraic varieties as intersections of the least possible number of hypersurfaces and—a closely related problem—with the most economical generation of ideals in Noetherian rings. Along the way, one encounters many basic concepts of commutative algebra and algebraic geometry and proves many facts which can then serve as a basic stock for a deeper study of these subjects.
Algebraic Geometry and Arithmetic Curves
Author: Qing Liu
Publisher: Oxford University Press
ISBN: 0191547808
Category : Mathematics
Languages : en
Pages : 593
Book Description
This book is a general introduction to the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves. The first part introduces basic objects such as schemes, morphisms, base change, local properties (normality, regularity, Zariski's Main Theorem). This is followed by the more global aspect: coherent sheaves and a finiteness theorem for their cohomology groups. Then follows a chapter on sheaves of differentials, dualizing sheaves, and Grothendieck's duality theory. The first part ends with the theorem of Riemann-Roch and its application to the study of smooth projective curves over a field. Singular curves are treated through a detailed study of the Picard group. The second part starts with blowing-ups and desingularisation (embedded or not) of fibered surfaces over a Dedekind ring that leads on to intersection theory on arithmetic surfaces. Castelnuovo's criterion is proved and also the existence of the minimal regular model. This leads to the study of reduction of algebraic curves. The case of elliptic curves is studied in detail. The book concludes with the funadmental theorem of stable reduction of Deligne-Mumford. The book is essentially self-contained, including the necessary material on commutative algebra. The prerequisites are therefore few, and the book should suit a graduate student. It contains many examples and nearly 600 exercises.
Publisher: Oxford University Press
ISBN: 0191547808
Category : Mathematics
Languages : en
Pages : 593
Book Description
This book is a general introduction to the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves. The first part introduces basic objects such as schemes, morphisms, base change, local properties (normality, regularity, Zariski's Main Theorem). This is followed by the more global aspect: coherent sheaves and a finiteness theorem for their cohomology groups. Then follows a chapter on sheaves of differentials, dualizing sheaves, and Grothendieck's duality theory. The first part ends with the theorem of Riemann-Roch and its application to the study of smooth projective curves over a field. Singular curves are treated through a detailed study of the Picard group. The second part starts with blowing-ups and desingularisation (embedded or not) of fibered surfaces over a Dedekind ring that leads on to intersection theory on arithmetic surfaces. Castelnuovo's criterion is proved and also the existence of the minimal regular model. This leads to the study of reduction of algebraic curves. The case of elliptic curves is studied in detail. The book concludes with the funadmental theorem of stable reduction of Deligne-Mumford. The book is essentially self-contained, including the necessary material on commutative algebra. The prerequisites are therefore few, and the book should suit a graduate student. It contains many examples and nearly 600 exercises.