Author: William Liu
Publisher: Wiley-IEEE Press
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 608
Book Description
An expert guide to understanding and making optimum use of BSIM Used by more chip designers worldwide than any other comparable model, the Berkeley Short-Channel IGFET Model (BSIM) has, over the past few years, established itself as the de facto standard MOSFET SPICE model for circuit simulation and CMOS technology development. Yet, until now, there have been no independent expert guides or tutorials to supplement the various BSIM manuals currently available. Written by a noted expert in the field, this book fills that gap in the literature by providing a comprehensive guide to understanding and making optimal use of BSIM3 and BSIM4. Drawing upon his extensive experience designing with BSIM, William Liu provides a brief history of the model, discusses the various advantages of BSIM over other models, and explores the reasons why BSIM3 has been adopted by the majority of circuit manufacturers. He then provides engineers with the detailed practical information and guidance they need to master all of BSIM's features. He: Summarizes key BSIM3 components Represents the BSIM3 model with equivalent circuits for various operating conditions Provides a comprehensive glossary of modeling terminology Lists alphabetically BSIM3 parameters along with their meanings and relevant equations Explores BSIM3's flaws and provides improvement suggestions Describes all of BSIM4's improvements and new features Provides useful SPICE files, which are available online at the Wiley ftp site
MOSFET Models for SPICE Simulation
Author: William Liu
Publisher: Wiley-IEEE Press
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 608
Book Description
An expert guide to understanding and making optimum use of BSIM Used by more chip designers worldwide than any other comparable model, the Berkeley Short-Channel IGFET Model (BSIM) has, over the past few years, established itself as the de facto standard MOSFET SPICE model for circuit simulation and CMOS technology development. Yet, until now, there have been no independent expert guides or tutorials to supplement the various BSIM manuals currently available. Written by a noted expert in the field, this book fills that gap in the literature by providing a comprehensive guide to understanding and making optimal use of BSIM3 and BSIM4. Drawing upon his extensive experience designing with BSIM, William Liu provides a brief history of the model, discusses the various advantages of BSIM over other models, and explores the reasons why BSIM3 has been adopted by the majority of circuit manufacturers. He then provides engineers with the detailed practical information and guidance they need to master all of BSIM's features. He: Summarizes key BSIM3 components Represents the BSIM3 model with equivalent circuits for various operating conditions Provides a comprehensive glossary of modeling terminology Lists alphabetically BSIM3 parameters along with their meanings and relevant equations Explores BSIM3's flaws and provides improvement suggestions Describes all of BSIM4's improvements and new features Provides useful SPICE files, which are available online at the Wiley ftp site
Publisher: Wiley-IEEE Press
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 608
Book Description
An expert guide to understanding and making optimum use of BSIM Used by more chip designers worldwide than any other comparable model, the Berkeley Short-Channel IGFET Model (BSIM) has, over the past few years, established itself as the de facto standard MOSFET SPICE model for circuit simulation and CMOS technology development. Yet, until now, there have been no independent expert guides or tutorials to supplement the various BSIM manuals currently available. Written by a noted expert in the field, this book fills that gap in the literature by providing a comprehensive guide to understanding and making optimal use of BSIM3 and BSIM4. Drawing upon his extensive experience designing with BSIM, William Liu provides a brief history of the model, discusses the various advantages of BSIM over other models, and explores the reasons why BSIM3 has been adopted by the majority of circuit manufacturers. He then provides engineers with the detailed practical information and guidance they need to master all of BSIM's features. He: Summarizes key BSIM3 components Represents the BSIM3 model with equivalent circuits for various operating conditions Provides a comprehensive glossary of modeling terminology Lists alphabetically BSIM3 parameters along with their meanings and relevant equations Explores BSIM3's flaws and provides improvement suggestions Describes all of BSIM4's improvements and new features Provides useful SPICE files, which are available online at the Wiley ftp site
MOSFET Modeling with SPICE
Author: Daniel Foty
Publisher: Prentice Hall
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 680
Book Description
This book will help CMOS circuit designers make the best possible use of SPICE models, and will prepare them for new models that may soon be introduced. Introduces SPICE modeling and its use in CMOS circuit design. Presents the formalism of model building and the semiconductor physics of MOS structures. Covers each important SPICE model, showing how to choose the appropriate model. Discusses the popular HSPICE Level 28, as well as Levels 1-3, BSIM 1-3, and MOS Model 9. Presents techniques for accounting for systematic process variations. Describes new model candidates, including the Power-Lane Model, the PCIM Model, and the EKV Model. Includes extensive examples throughout. Practicing engineers and scientists in the semiconductor industry; engineering faculty and students.
Publisher: Prentice Hall
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 680
Book Description
This book will help CMOS circuit designers make the best possible use of SPICE models, and will prepare them for new models that may soon be introduced. Introduces SPICE modeling and its use in CMOS circuit design. Presents the formalism of model building and the semiconductor physics of MOS structures. Covers each important SPICE model, showing how to choose the appropriate model. Discusses the popular HSPICE Level 28, as well as Levels 1-3, BSIM 1-3, and MOS Model 9. Presents techniques for accounting for systematic process variations. Describes new model candidates, including the Power-Lane Model, the PCIM Model, and the EKV Model. Includes extensive examples throughout. Practicing engineers and scientists in the semiconductor industry; engineering faculty and students.
BSIM4 and MOSFET Modeling for IC Simulation
Author: Weidong Liu
Publisher: World Scientific
ISBN: 9812813993
Category : Technology & Engineering
Languages : en
Pages : 435
Book Description
This book presents the art of advanced MOSFET modeling for integrated circuit simulation and design. It provides the essential mathematical and physical analyses of all the electrical, mechanical and thermal effects in MOS transistors relevant to the operation of integrated circuits. Particular emphasis is placed on how the BSIM model evolved into the first ever industry standard SPICE MOSFET model for circuit simulation and CMOS technology development. The discussion covers the theory and methodology of how a MOSFET model, or semiconductor device models in general, can be implemented to be robust and efficient, turning device physics theory into a production-worthy SPICE simulation model. Special attention is paid to MOSFET characterization and model parameter extraction methodologies, making the book particularly useful for those interested or already engaged in work in the areas of semiconductor devices, compact modeling for SPICE simulation, and integrated circuit design.
Publisher: World Scientific
ISBN: 9812813993
Category : Technology & Engineering
Languages : en
Pages : 435
Book Description
This book presents the art of advanced MOSFET modeling for integrated circuit simulation and design. It provides the essential mathematical and physical analyses of all the electrical, mechanical and thermal effects in MOS transistors relevant to the operation of integrated circuits. Particular emphasis is placed on how the BSIM model evolved into the first ever industry standard SPICE MOSFET model for circuit simulation and CMOS technology development. The discussion covers the theory and methodology of how a MOSFET model, or semiconductor device models in general, can be implemented to be robust and efficient, turning device physics theory into a production-worthy SPICE simulation model. Special attention is paid to MOSFET characterization and model parameter extraction methodologies, making the book particularly useful for those interested or already engaged in work in the areas of semiconductor devices, compact modeling for SPICE simulation, and integrated circuit design.
Mosfet Modeling For Vlsi Simulation: Theory And Practice
Author: Narain Arora
Publisher: World Scientific
ISBN: 9814365491
Category : Technology & Engineering
Languages : en
Pages : 633
Book Description
A reprint of the classic text, this book popularized compact modeling of electronic and semiconductor devices and components for college and graduate-school classrooms, and manufacturing engineering, over a decade ago. The first comprehensive book on MOS transistor compact modeling, it was the most cited among similar books in the area and remains the most frequently cited today. The coverage is device-physics based and continues to be relevant to the latest advances in MOS transistor modeling. This is also the only book that discusses in detail how to measure device model parameters required for circuit simulations.The book deals with the MOS Field Effect Transistor (MOSFET) models that are derived from basic semiconductor theory. Various models are developed, ranging from simple to more sophisticated models that take into account new physical effects observed in submicron transistors used in today's (1993) MOS VLSI technology. The assumptions used to arrive at the models are emphasized so that the accuracy of the models in describing the device characteristics are clearly understood. Due to the importance of designing reliable circuits, device reliability models are also covered. Understanding these models is essential when designing circuits for state-of-the-art MOS ICs.
Publisher: World Scientific
ISBN: 9814365491
Category : Technology & Engineering
Languages : en
Pages : 633
Book Description
A reprint of the classic text, this book popularized compact modeling of electronic and semiconductor devices and components for college and graduate-school classrooms, and manufacturing engineering, over a decade ago. The first comprehensive book on MOS transistor compact modeling, it was the most cited among similar books in the area and remains the most frequently cited today. The coverage is device-physics based and continues to be relevant to the latest advances in MOS transistor modeling. This is also the only book that discusses in detail how to measure device model parameters required for circuit simulations.The book deals with the MOS Field Effect Transistor (MOSFET) models that are derived from basic semiconductor theory. Various models are developed, ranging from simple to more sophisticated models that take into account new physical effects observed in submicron transistors used in today's (1993) MOS VLSI technology. The assumptions used to arrive at the models are emphasized so that the accuracy of the models in describing the device characteristics are clearly understood. Due to the importance of designing reliable circuits, device reliability models are also covered. Understanding these models is essential when designing circuits for state-of-the-art MOS ICs.
Semiconductor Device Modeling with Spice
Author: Giuseppe Massabrio
Publisher: McGraw Hill Professional
ISBN: 9780071349550
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.
Publisher: McGraw Hill Professional
ISBN: 9780071349550
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.
MOSFET Models for VLSI Circuit Simulation
Author: Narain D. Arora
Publisher: Springer Science & Business Media
ISBN: 3709192471
Category : Computers
Languages : en
Pages : 628
Book Description
Metal Oxide Semiconductor (MOS) transistors are the basic building block ofMOS integrated circuits (I C). Very Large Scale Integrated (VLSI) circuits using MOS technology have emerged as the dominant technology in the semiconductor industry. Over the past decade, the complexity of MOS IC's has increased at an astonishing rate. This is realized mainly through the reduction of MOS transistor dimensions in addition to the improvements in processing. Today VLSI circuits with over 3 million transistors on a chip, with effective or electrical channel lengths of 0. 5 microns, are in volume production. Designing such complex chips is virtually impossible without simulation tools which help to predict circuit behavior before actual circuits are fabricated. However, the utility of simulators as a tool for the design and analysis of circuits depends on the adequacy of the device models used in the simulator. This problem is further aggravated by the technology trend towards smaller and smaller device dimensions which increases the complexity of the models. There is extensive literature available on modeling these short channel devices. However, there is a lot of confusion too. Often it is not clear what model to use and which model parameter values are important and how to determine them. After working over 15 years in the field of semiconductor device modeling, I have felt the need for a book which can fill the gap between the theory and the practice of MOS transistor modeling. This book is an attempt in that direction.
Publisher: Springer Science & Business Media
ISBN: 3709192471
Category : Computers
Languages : en
Pages : 628
Book Description
Metal Oxide Semiconductor (MOS) transistors are the basic building block ofMOS integrated circuits (I C). Very Large Scale Integrated (VLSI) circuits using MOS technology have emerged as the dominant technology in the semiconductor industry. Over the past decade, the complexity of MOS IC's has increased at an astonishing rate. This is realized mainly through the reduction of MOS transistor dimensions in addition to the improvements in processing. Today VLSI circuits with over 3 million transistors on a chip, with effective or electrical channel lengths of 0. 5 microns, are in volume production. Designing such complex chips is virtually impossible without simulation tools which help to predict circuit behavior before actual circuits are fabricated. However, the utility of simulators as a tool for the design and analysis of circuits depends on the adequacy of the device models used in the simulator. This problem is further aggravated by the technology trend towards smaller and smaller device dimensions which increases the complexity of the models. There is extensive literature available on modeling these short channel devices. However, there is a lot of confusion too. Often it is not clear what model to use and which model parameter values are important and how to determine them. After working over 15 years in the field of semiconductor device modeling, I have felt the need for a book which can fill the gap between the theory and the practice of MOS transistor modeling. This book is an attempt in that direction.
Mosfet Modeling for VLSI Simulation
Author: Narain Arora
Publisher: World Scientific
ISBN: 9812707581
Category : Technology & Engineering
Languages : en
Pages : 633
Book Description
A reprint of the classic text, this book popularized compact modeling of electronic and semiconductor devices and components for college and graduate-school classrooms, and manufacturing engineering, over a decade ago. The first comprehensive book on MOS transistor compact modeling, it was the most cited among similar books in the area and remains the most frequently cited today. The coverage is device-physics based and continues to be relevant to the latest advances in MOS transistor modeling. This is also the only book that discusses in detail how to measure device model parameters required for circuit simulations. The book deals with the MOS Field Effect Transistor (MOSFET) models that are derived from basic semiconductor theory. Various models are developed, ranging from simple to more sophisticated models that take into account new physical effects observed in submicron transistors used in today's (1993) MOS VLSI technology. The assumptions used to arrive at the models are emphasized so that the accuracy of the models in describing the device characteristics are clearly understood. Due to the importance of designing reliable circuits, device reliability models are also covered. Understanding these models is essential when designing circuits for state-of-the-art MOS ICs.
Publisher: World Scientific
ISBN: 9812707581
Category : Technology & Engineering
Languages : en
Pages : 633
Book Description
A reprint of the classic text, this book popularized compact modeling of electronic and semiconductor devices and components for college and graduate-school classrooms, and manufacturing engineering, over a decade ago. The first comprehensive book on MOS transistor compact modeling, it was the most cited among similar books in the area and remains the most frequently cited today. The coverage is device-physics based and continues to be relevant to the latest advances in MOS transistor modeling. This is also the only book that discusses in detail how to measure device model parameters required for circuit simulations. The book deals with the MOS Field Effect Transistor (MOSFET) models that are derived from basic semiconductor theory. Various models are developed, ranging from simple to more sophisticated models that take into account new physical effects observed in submicron transistors used in today's (1993) MOS VLSI technology. The assumptions used to arrive at the models are emphasized so that the accuracy of the models in describing the device characteristics are clearly understood. Due to the importance of designing reliable circuits, device reliability models are also covered. Understanding these models is essential when designing circuits for state-of-the-art MOS ICs.
FET Modeling for Circuit Simulation
Author: Dileep A. Divekar
Publisher: Springer Science & Business Media
ISBN: 1461316871
Category : Technology & Engineering
Languages : en
Pages : 192
Book Description
Circuit simulation is widely used for the design of circuits, both discrete and integrated. Device modeling is an impor tant aspect of circuit simulation since it is the link between the physical device and the sim ulate d device. Curren tly available circuit simulation programs provide a variety of built-in models. Many circuit designers use these built-in models whereas some incorporate new models in the circuit sim ulation programs. Understanding device modeling with particular emphasis on circuit simulation will be helpful in utilizing the built-in models more efficiently as well as in implementing new models. SPICE is used as a vehicle since it is the most widely used circuit sim ulation program. How ever, some issues are addressed which are not directly appli cable to SPICE but are applicable to circuit simulation in general. These discussions are useful for modifying SPICE and for understanding other simulation programs. The gen eric version 2G. 6 is used as a reference for SPICE, although numerous different versions exist with different modifications. This book describes field effect transistor models commonly used in a variety of circuit sim ulation pro grams. Understanding of the basic device physics and some familiarity with device modeling is assumed. Derivation of the model equations is not included. ( SPICE is a circuit sim ulation program available from EECS Industrial Support Office, 461 Cory Hall, University of Cali fornia, Berkeley, CA 94720. ) Acknowledgements I wish to express my gratitude to Valid Logic Systems, Inc.
Publisher: Springer Science & Business Media
ISBN: 1461316871
Category : Technology & Engineering
Languages : en
Pages : 192
Book Description
Circuit simulation is widely used for the design of circuits, both discrete and integrated. Device modeling is an impor tant aspect of circuit simulation since it is the link between the physical device and the sim ulate d device. Curren tly available circuit simulation programs provide a variety of built-in models. Many circuit designers use these built-in models whereas some incorporate new models in the circuit sim ulation programs. Understanding device modeling with particular emphasis on circuit simulation will be helpful in utilizing the built-in models more efficiently as well as in implementing new models. SPICE is used as a vehicle since it is the most widely used circuit sim ulation program. How ever, some issues are addressed which are not directly appli cable to SPICE but are applicable to circuit simulation in general. These discussions are useful for modifying SPICE and for understanding other simulation programs. The gen eric version 2G. 6 is used as a reference for SPICE, although numerous different versions exist with different modifications. This book describes field effect transistor models commonly used in a variety of circuit sim ulation pro grams. Understanding of the basic device physics and some familiarity with device modeling is assumed. Derivation of the model equations is not included. ( SPICE is a circuit sim ulation program available from EECS Industrial Support Office, 461 Cory Hall, University of Cali fornia, Berkeley, CA 94720. ) Acknowledgements I wish to express my gratitude to Valid Logic Systems, Inc.
MOSFET Modeling & BSIM3 User’s Guide
Author: Yuhua Cheng
Publisher: Springer Science & Business Media
ISBN: 0306470500
Category : Technology & Engineering
Languages : en
Pages : 467
Book Description
Circuit simulation is essential in integrated circuit design, and the accuracy of circuit simulation depends on the accuracy of the transistor model. BSIM3v3 (BSIM for Berkeley Short-channel IGFET Model) has been selected as the first MOSFET model for standardization by the Compact Model Council, a consortium of leading companies in semiconductor and design tools. In the next few years, many fabless and integrated semiconductor companies are expected to switch from dozens of other MOSFET models to BSIM3. This will require many device engineers and most circuit designers to learn the basics of BSIM3. MOSFET Modeling & BSIM3 User's Guide explains the detailed physical effects that are important in modeling MOSFETs, and presents the derivations of compact model expressions so that users can understand the physical meaning of the model equations and parameters. It is the first book devoted to BSIM3. It treats the BSIM3 model in detail as used in digital, analog and RF circuit design. It covers the complete set of models, i.e., I-V model, capacitance model, noise model, parasitics model, substrate current model, temperature effect model and non quasi-static model. MOSFET Modeling & BSIM3 User's Guide not only addresses the device modeling issues but also provides a user's guide to the device or circuit design engineers who use the BSIM3 model in digital/analog circuit design, RF modeling, statistical modeling, and technology prediction. This book is written for circuit designers and device engineers, as well as device scientists worldwide. It is also suitable as a reference for graduate courses and courses in circuit design or device modelling. Furthermore, it can be used as a textbook for industry courses devoted to BSIM3. MOSFET Modeling & BSIM3 User's Guide is comprehensive and practical. It is balanced between the background information and advanced discussion of BSIM3. It is helpful to experts and students alike.
Publisher: Springer Science & Business Media
ISBN: 0306470500
Category : Technology & Engineering
Languages : en
Pages : 467
Book Description
Circuit simulation is essential in integrated circuit design, and the accuracy of circuit simulation depends on the accuracy of the transistor model. BSIM3v3 (BSIM for Berkeley Short-channel IGFET Model) has been selected as the first MOSFET model for standardization by the Compact Model Council, a consortium of leading companies in semiconductor and design tools. In the next few years, many fabless and integrated semiconductor companies are expected to switch from dozens of other MOSFET models to BSIM3. This will require many device engineers and most circuit designers to learn the basics of BSIM3. MOSFET Modeling & BSIM3 User's Guide explains the detailed physical effects that are important in modeling MOSFETs, and presents the derivations of compact model expressions so that users can understand the physical meaning of the model equations and parameters. It is the first book devoted to BSIM3. It treats the BSIM3 model in detail as used in digital, analog and RF circuit design. It covers the complete set of models, i.e., I-V model, capacitance model, noise model, parasitics model, substrate current model, temperature effect model and non quasi-static model. MOSFET Modeling & BSIM3 User's Guide not only addresses the device modeling issues but also provides a user's guide to the device or circuit design engineers who use the BSIM3 model in digital/analog circuit design, RF modeling, statistical modeling, and technology prediction. This book is written for circuit designers and device engineers, as well as device scientists worldwide. It is also suitable as a reference for graduate courses and courses in circuit design or device modelling. Furthermore, it can be used as a textbook for industry courses devoted to BSIM3. MOSFET Modeling & BSIM3 User's Guide is comprehensive and practical. It is balanced between the background information and advanced discussion of BSIM3. It is helpful to experts and students alike.
Mosfet Modeling For Circuit Analysis And Design
Author: Carlos Galup-montoro
Publisher: World Scientific
ISBN: 9814477974
Category : Technology & Engineering
Languages : en
Pages : 445
Book Description
This is the first book dedicated to the next generation of MOSFET models. Addressed to circuit designers with an in-depth treatment that appeals to device specialists, the book presents a fresh view of compact modeling, having completely abandoned the regional modeling approach.Both an overview of the basic physics theory required to build compact MOSFET models and a unified treatment of inversion-charge and surface-potential models are provided. The needs of digital, analog and RF designers as regards the availability of simple equations for circuit designs are taken into account. Compact expressions for hand analysis or for automatic synthesis, valid in all operating regions, are presented throughout the book. All the main expressions for computer simulation used in the new generation compact models are derived.Since designers in advanced technologies are increasingly concerned with fluctuations, the modeling of fluctuations is strongly emphasized. A unified approach for both space (matching) and time (noise) fluctuations is introduced.
Publisher: World Scientific
ISBN: 9814477974
Category : Technology & Engineering
Languages : en
Pages : 445
Book Description
This is the first book dedicated to the next generation of MOSFET models. Addressed to circuit designers with an in-depth treatment that appeals to device specialists, the book presents a fresh view of compact modeling, having completely abandoned the regional modeling approach.Both an overview of the basic physics theory required to build compact MOSFET models and a unified treatment of inversion-charge and surface-potential models are provided. The needs of digital, analog and RF designers as regards the availability of simple equations for circuit designs are taken into account. Compact expressions for hand analysis or for automatic synthesis, valid in all operating regions, are presented throughout the book. All the main expressions for computer simulation used in the new generation compact models are derived.Since designers in advanced technologies are increasingly concerned with fluctuations, the modeling of fluctuations is strongly emphasized. A unified approach for both space (matching) and time (noise) fluctuations is introduced.