Author: David M. Ferguson
Publisher: John Wiley & Sons
ISBN: 0470142170
Category : Science
Languages : en
Pages : 576
Book Description
In Monte Carlo Methods in Chemical Physics: An Introduction to the Monte Carlo Method for Particle Simulations J. Ilja Siepmann Random Number Generators for Parallel Applications Ashok Srinivasan, David M. Ceperley and Michael Mascagni Between Classical and Quantum Monte Carlo Methods: "Variational" QMC Dario Bressanini and Peter J. Reynolds Monte Carlo Eigenvalue Methods in Quantum Mechanics and Statistical Mechanics M. P. Nightingale and C.J. Umrigar Adaptive Path-Integral Monte Carlo Methods for Accurate Computation of Molecular Thermodynamic Properties Robert Q. Topper Monte Carlo Sampling for Classical Trajectory Simulations Gilles H. Peslherbe Haobin Wang and William L. Hase Monte Carlo Approaches to the Protein Folding Problem Jeffrey Skolnick and Andrzej Kolinski Entropy Sampling Monte Carlo for Polypeptides and Proteins Harold A. Scheraga and Minh-Hong Hao Macrostate Dissection of Thermodynamic Monte Carlo Integrals Bruce W. Church, Alex Ulitsky, and David Shalloway Simulated Annealing-Optimal Histogram Methods David M. Ferguson and David G. Garrett Monte Carlo Methods for Polymeric Systems Juan J. de Pablo and Fernando A. Escobedo Thermodynamic-Scaling Methods in Monte Carlo and Their Application to Phase Equilibria John Valleau Semigrand Canonical Monte Carlo Simulation: Integration Along Coexistence Lines David A. Kofke Monte Carlo Methods for Simulating Phase Equilibria of Complex Fluids J. Ilja Siepmann Reactive Canonical Monte Carlo J. Karl Johnson New Monte Carlo Algorithms for Classical Spin Systems G. T. Barkema and M.E.J. Newman
Monte Carlo Methods in Chemical Physics
Author: David M. Ferguson
Publisher: John Wiley & Sons
ISBN: 0470142170
Category : Science
Languages : en
Pages : 576
Book Description
In Monte Carlo Methods in Chemical Physics: An Introduction to the Monte Carlo Method for Particle Simulations J. Ilja Siepmann Random Number Generators for Parallel Applications Ashok Srinivasan, David M. Ceperley and Michael Mascagni Between Classical and Quantum Monte Carlo Methods: "Variational" QMC Dario Bressanini and Peter J. Reynolds Monte Carlo Eigenvalue Methods in Quantum Mechanics and Statistical Mechanics M. P. Nightingale and C.J. Umrigar Adaptive Path-Integral Monte Carlo Methods for Accurate Computation of Molecular Thermodynamic Properties Robert Q. Topper Monte Carlo Sampling for Classical Trajectory Simulations Gilles H. Peslherbe Haobin Wang and William L. Hase Monte Carlo Approaches to the Protein Folding Problem Jeffrey Skolnick and Andrzej Kolinski Entropy Sampling Monte Carlo for Polypeptides and Proteins Harold A. Scheraga and Minh-Hong Hao Macrostate Dissection of Thermodynamic Monte Carlo Integrals Bruce W. Church, Alex Ulitsky, and David Shalloway Simulated Annealing-Optimal Histogram Methods David M. Ferguson and David G. Garrett Monte Carlo Methods for Polymeric Systems Juan J. de Pablo and Fernando A. Escobedo Thermodynamic-Scaling Methods in Monte Carlo and Their Application to Phase Equilibria John Valleau Semigrand Canonical Monte Carlo Simulation: Integration Along Coexistence Lines David A. Kofke Monte Carlo Methods for Simulating Phase Equilibria of Complex Fluids J. Ilja Siepmann Reactive Canonical Monte Carlo J. Karl Johnson New Monte Carlo Algorithms for Classical Spin Systems G. T. Barkema and M.E.J. Newman
Publisher: John Wiley & Sons
ISBN: 0470142170
Category : Science
Languages : en
Pages : 576
Book Description
In Monte Carlo Methods in Chemical Physics: An Introduction to the Monte Carlo Method for Particle Simulations J. Ilja Siepmann Random Number Generators for Parallel Applications Ashok Srinivasan, David M. Ceperley and Michael Mascagni Between Classical and Quantum Monte Carlo Methods: "Variational" QMC Dario Bressanini and Peter J. Reynolds Monte Carlo Eigenvalue Methods in Quantum Mechanics and Statistical Mechanics M. P. Nightingale and C.J. Umrigar Adaptive Path-Integral Monte Carlo Methods for Accurate Computation of Molecular Thermodynamic Properties Robert Q. Topper Monte Carlo Sampling for Classical Trajectory Simulations Gilles H. Peslherbe Haobin Wang and William L. Hase Monte Carlo Approaches to the Protein Folding Problem Jeffrey Skolnick and Andrzej Kolinski Entropy Sampling Monte Carlo for Polypeptides and Proteins Harold A. Scheraga and Minh-Hong Hao Macrostate Dissection of Thermodynamic Monte Carlo Integrals Bruce W. Church, Alex Ulitsky, and David Shalloway Simulated Annealing-Optimal Histogram Methods David M. Ferguson and David G. Garrett Monte Carlo Methods for Polymeric Systems Juan J. de Pablo and Fernando A. Escobedo Thermodynamic-Scaling Methods in Monte Carlo and Their Application to Phase Equilibria John Valleau Semigrand Canonical Monte Carlo Simulation: Integration Along Coexistence Lines David A. Kofke Monte Carlo Methods for Simulating Phase Equilibria of Complex Fluids J. Ilja Siepmann Reactive Canonical Monte Carlo J. Karl Johnson New Monte Carlo Algorithms for Classical Spin Systems G. T. Barkema and M.E.J. Newman
Monte Carlo Methods in Quantum Problems
Author: M.H. Kalos
Publisher: Springer Science & Business Media
ISBN: 940096384X
Category : Science
Languages : en
Pages : 292
Book Description
Monte Carlo methods have been a tool of theoretical and computational scientists for many years. In particular, the invention and percolation of the algorithm of Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller sparked a rapid growth of applications to classical statistical mechanics. Although proposals for treatment of quantum systems had been made even earlier, only a few serious calculations had heen carried out. Ruch calculations are generally more consuming of computer resources than for classical systems and no universal algorithm had--or indeed has yet-- emerged. However, with advances in techniques and in sheer computing power, Monte Carlo methods have been used with considerable success in treating quantum fluids and crystals, simple models of nuclear matter, and few-body nuclei. Research at several institutions suggest that they may offer a new approach to quantum chemistry, one that is independent of basis ann yet capable of chemical accuracy. That. Monte Carlo methods can attain the very great precision needed is itself a remarkable achievement. More recently, new interest in such methods has arisen in two new a~as. Particle theorists, in particular K. Wilson, have drawn attention to the rich analogy between quantum field theoty and statistical mechanics and to the merits of Monte Carlo calculations for lattice gauge theories. This has become a rapidly growing sub-field. A related development is associated with lattice problems in quantum physics, particularly with models of solid state systems. The~ is much ferment in the calculation of various one-dimensional problems such as the'Hubbard model.
Publisher: Springer Science & Business Media
ISBN: 940096384X
Category : Science
Languages : en
Pages : 292
Book Description
Monte Carlo methods have been a tool of theoretical and computational scientists for many years. In particular, the invention and percolation of the algorithm of Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller sparked a rapid growth of applications to classical statistical mechanics. Although proposals for treatment of quantum systems had been made even earlier, only a few serious calculations had heen carried out. Ruch calculations are generally more consuming of computer resources than for classical systems and no universal algorithm had--or indeed has yet-- emerged. However, with advances in techniques and in sheer computing power, Monte Carlo methods have been used with considerable success in treating quantum fluids and crystals, simple models of nuclear matter, and few-body nuclei. Research at several institutions suggest that they may offer a new approach to quantum chemistry, one that is independent of basis ann yet capable of chemical accuracy. That. Monte Carlo methods can attain the very great precision needed is itself a remarkable achievement. More recently, new interest in such methods has arisen in two new a~as. Particle theorists, in particular K. Wilson, have drawn attention to the rich analogy between quantum field theoty and statistical mechanics and to the merits of Monte Carlo calculations for lattice gauge theories. This has become a rapidly growing sub-field. A related development is associated with lattice problems in quantum physics, particularly with models of solid state systems. The~ is much ferment in the calculation of various one-dimensional problems such as the'Hubbard model.
Computer Simulation in Chemical Physics
Author: M.P. Allen
Publisher: Springer Science & Business Media
ISBN: 9401116792
Category : Science
Languages : en
Pages : 522
Book Description
Computer Simulation in Chemical Physics contains the proceedings of a NATO Advanced Study Institute held at CORISA, Alghero, Sardinia, in September 1992. In the five years that have elapsed since the field was last summarized there have been a number of remarkable advances which have significantly expanded the scope of the methods. Good examples are the Car--Parrinello method, which allows the study of materials with itinerant electrons; the Gibbs technique for the direct simulation of liquid--vapor phase equilibria; the transfer of scaling concepts from simulations of spin models to more complex systems; and the development of the configurational--biased Monte-Carlo methods for studying dense polymers. The field has also been stimulated by an enormous increase in available computing power and the provision of new software. All these exciting developments, an more, are discussed in an accessible way here, making the book indispensable reading for graduate students and research scientists in both academic and industrial settings.
Publisher: Springer Science & Business Media
ISBN: 9401116792
Category : Science
Languages : en
Pages : 522
Book Description
Computer Simulation in Chemical Physics contains the proceedings of a NATO Advanced Study Institute held at CORISA, Alghero, Sardinia, in September 1992. In the five years that have elapsed since the field was last summarized there have been a number of remarkable advances which have significantly expanded the scope of the methods. Good examples are the Car--Parrinello method, which allows the study of materials with itinerant electrons; the Gibbs technique for the direct simulation of liquid--vapor phase equilibria; the transfer of scaling concepts from simulations of spin models to more complex systems; and the development of the configurational--biased Monte-Carlo methods for studying dense polymers. The field has also been stimulated by an enormous increase in available computing power and the provision of new software. All these exciting developments, an more, are discussed in an accessible way here, making the book indispensable reading for graduate students and research scientists in both academic and industrial settings.
Exploring Monte Carlo Methods
Author: William L. Dunn
Publisher: Elsevier
ISBN: 0128197455
Category : Science
Languages : en
Pages : 594
Book Description
Exploring Monte Carlo Methods, Second Edition provides a valuable introduction to the numerical methods that have come to be known as "Monte Carlo." This unique and trusted resource for course use, as well as researcher reference, offers accessible coverage, clear explanations and helpful examples throughout. Building from the basics, the text also includes applications in a variety of fields, such as physics, nuclear engineering, finance and investment, medical modeling and prediction, archaeology, geology and transportation planning. - Provides a comprehensive yet concise treatment of Monte Carlo methods - Uses the famous "Buffon's needle problem" as a unifying theme to illustrate the many aspects of Monte Carlo methods - Includes numerous exercises and useful appendices on: Certain mathematical functions, Bose Einstein functions, Fermi Dirac functions and Watson functions
Publisher: Elsevier
ISBN: 0128197455
Category : Science
Languages : en
Pages : 594
Book Description
Exploring Monte Carlo Methods, Second Edition provides a valuable introduction to the numerical methods that have come to be known as "Monte Carlo." This unique and trusted resource for course use, as well as researcher reference, offers accessible coverage, clear explanations and helpful examples throughout. Building from the basics, the text also includes applications in a variety of fields, such as physics, nuclear engineering, finance and investment, medical modeling and prediction, archaeology, geology and transportation planning. - Provides a comprehensive yet concise treatment of Monte Carlo methods - Uses the famous "Buffon's needle problem" as a unifying theme to illustrate the many aspects of Monte Carlo methods - Includes numerous exercises and useful appendices on: Certain mathematical functions, Bose Einstein functions, Fermi Dirac functions and Watson functions
Computational Materials Science
Author: Kaoru Ohno
Publisher: Springer Science & Business Media
ISBN: 3642598595
Category : Science
Languages : en
Pages : 336
Book Description
Powerful computers now enable scientists to model the physical and chemical properties and behavior of complex materials using first principles. This book introduces dramatically new computational techniques in materials research, specifically for understanding molecular dynamics.
Publisher: Springer Science & Business Media
ISBN: 3642598595
Category : Science
Languages : en
Pages : 336
Book Description
Powerful computers now enable scientists to model the physical and chemical properties and behavior of complex materials using first principles. This book introduces dramatically new computational techniques in materials research, specifically for understanding molecular dynamics.
Monte Carlo Methods in Chemical Physics
Author: David M. Ferguson
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 584
Book Description
In Monte Carlo Methods in Chemical Physics: An Introduction to the Monte Carlo Method for Particle Simulations J. Ilja Siepmann Random Number Generators for Parallel Applications Ashok Srinivasan, David M. Ceperley and Michael Mascagni Between Classical and Quantum Monte Carlo Methods: "Variational" QMC Dario Bressanini and Peter J. Reynolds Monte Carlo Eigenvalue Methods in Quantum Mechanics and Statistical Mechanics M. P. Nightingale and C.J. Umrigar Adaptive Path-Integral Monte Carlo Methods for Accurate Computation of Molecular Thermodynamic Properties Robert Q. Topper Monte Carlo Sampling for Classical Trajectory Simulations Gilles H. Peslherbe Haobin Wang and William L. Hase Monte Carlo Approaches to the Protein Folding Problem Jeffrey Skolnick and Andrzej Kolinski Entropy Sampling Monte Carlo for Polypeptides and Proteins Harold A. Scheraga and Minh-Hong Hao Macrostate Dissection of Thermodynamic Monte Carlo Integrals Bruce W. Church, Alex Ulitsky, and David Shalloway Simulated Annealing-Optimal Histogram Methods David M. Ferguson and David G. Garrett Monte Carlo Methods for Polymeric Systems Juan J. de Pablo and Fernando A. Escobedo Thermodynamic-Scaling Methods in Monte Carlo and Their Application to Phase Equilibria John Valleau Semigrand Canonical Monte Carlo Simulation: Integration Along Coexistence Lines David A. Kofke Monte Carlo Methods for Simulating Phase Equilibria of Complex Fluids J. Ilja Siepmann Reactive Canonical Monte Carlo J. Karl Johnson New Monte Carlo Algorithms for Classical Spin Systems G. T. Barkema and M.E.J. Newman
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 584
Book Description
In Monte Carlo Methods in Chemical Physics: An Introduction to the Monte Carlo Method for Particle Simulations J. Ilja Siepmann Random Number Generators for Parallel Applications Ashok Srinivasan, David M. Ceperley and Michael Mascagni Between Classical and Quantum Monte Carlo Methods: "Variational" QMC Dario Bressanini and Peter J. Reynolds Monte Carlo Eigenvalue Methods in Quantum Mechanics and Statistical Mechanics M. P. Nightingale and C.J. Umrigar Adaptive Path-Integral Monte Carlo Methods for Accurate Computation of Molecular Thermodynamic Properties Robert Q. Topper Monte Carlo Sampling for Classical Trajectory Simulations Gilles H. Peslherbe Haobin Wang and William L. Hase Monte Carlo Approaches to the Protein Folding Problem Jeffrey Skolnick and Andrzej Kolinski Entropy Sampling Monte Carlo for Polypeptides and Proteins Harold A. Scheraga and Minh-Hong Hao Macrostate Dissection of Thermodynamic Monte Carlo Integrals Bruce W. Church, Alex Ulitsky, and David Shalloway Simulated Annealing-Optimal Histogram Methods David M. Ferguson and David G. Garrett Monte Carlo Methods for Polymeric Systems Juan J. de Pablo and Fernando A. Escobedo Thermodynamic-Scaling Methods in Monte Carlo and Their Application to Phase Equilibria John Valleau Semigrand Canonical Monte Carlo Simulation: Integration Along Coexistence Lines David A. Kofke Monte Carlo Methods for Simulating Phase Equilibria of Complex Fluids J. Ilja Siepmann Reactive Canonical Monte Carlo J. Karl Johnson New Monte Carlo Algorithms for Classical Spin Systems G. T. Barkema and M.E.J. Newman
Quantum Chemistry and Dynamics of Excited States
Author: Leticia González
Publisher: John Wiley & Sons
ISBN: 1119417759
Category : Science
Languages : en
Pages : 52
Book Description
An introduction to the rapidly evolving methodology of electronic excited states For academic researchers, postdocs, graduate and undergraduate students, Quantum Chemistry and Dynamics of Excited States: Methods and Applications reports the most updated and accurate theoretical techniques to treat electronic excited states. From methods to deal with stationary calculations through time-dependent simulations of molecular systems, this book serves as a guide for beginners in the field and knowledge seekers alike. Taking into account the most recent theory developments and representative applications, it also covers the often-overlooked gap between theoretical and computational chemistry. An excellent reference for both researchers and students, Excited States provides essential knowledge on quantum chemistry, an in-depth overview of the latest developments, and theoretical techniques around the properties and nonadiabatic dynamics of chemical systems. Readers will learn: ● Essential theoretical techniques to describe the properties and dynamics of chemical systems ● Electronic Structure methods for stationary calculations ● Methods for electronic excited states from both a quantum chemical and time-dependent point of view ● A breakdown of the most recent developments in the past 30 years For those searching for a better understanding of excited states as they relate to chemistry, biochemistry, industrial chemistry, and beyond, Quantum Chemistry and Dynamics of Excited States provides a solid education in the necessary foundations and important theories of excited states in photochemistry and ultrafast phenomena.
Publisher: John Wiley & Sons
ISBN: 1119417759
Category : Science
Languages : en
Pages : 52
Book Description
An introduction to the rapidly evolving methodology of electronic excited states For academic researchers, postdocs, graduate and undergraduate students, Quantum Chemistry and Dynamics of Excited States: Methods and Applications reports the most updated and accurate theoretical techniques to treat electronic excited states. From methods to deal with stationary calculations through time-dependent simulations of molecular systems, this book serves as a guide for beginners in the field and knowledge seekers alike. Taking into account the most recent theory developments and representative applications, it also covers the often-overlooked gap between theoretical and computational chemistry. An excellent reference for both researchers and students, Excited States provides essential knowledge on quantum chemistry, an in-depth overview of the latest developments, and theoretical techniques around the properties and nonadiabatic dynamics of chemical systems. Readers will learn: ● Essential theoretical techniques to describe the properties and dynamics of chemical systems ● Electronic Structure methods for stationary calculations ● Methods for electronic excited states from both a quantum chemical and time-dependent point of view ● A breakdown of the most recent developments in the past 30 years For those searching for a better understanding of excited states as they relate to chemistry, biochemistry, industrial chemistry, and beyond, Quantum Chemistry and Dynamics of Excited States provides a solid education in the necessary foundations and important theories of excited states in photochemistry and ultrafast phenomena.
An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions
Author: A.P.J. Jansen
Publisher: Springer
ISBN: 364229488X
Category : Science
Languages : en
Pages : 266
Book Description
Kinetic Monte Carlo (kMC) simulations still represent a quite new area of research, with a rapidly growing number of publications. Broadly speaking, kMC can be applied to any system describable as a set of minima of a potential-energy surface, the evolution of which will then be regarded as hops from one minimum to a neighboring one. The hops in kMC are modeled as stochastic processes and the algorithms use random numbers to determine at which times the hops occur and to which neighboring minimum they go. Sometimes this approach is also called dynamic MC or Stochastic Simulation Algorithm, in particular when it is applied to solving macroscopic rate equations. This book has two objectives. First, it is a primer on the kMC method (predominantly using the lattice-gas model) and thus much of the book will also be useful for applications other than to surface reactions. Second, it is intended to teach the reader what can be learned from kMC simulations of surface reaction kinetics. With these goals in mind, the present text is conceived as a self-contained introduction for students and non-specialist researchers alike who are interested in entering the field and learning about the topic from scratch.
Publisher: Springer
ISBN: 364229488X
Category : Science
Languages : en
Pages : 266
Book Description
Kinetic Monte Carlo (kMC) simulations still represent a quite new area of research, with a rapidly growing number of publications. Broadly speaking, kMC can be applied to any system describable as a set of minima of a potential-energy surface, the evolution of which will then be regarded as hops from one minimum to a neighboring one. The hops in kMC are modeled as stochastic processes and the algorithms use random numbers to determine at which times the hops occur and to which neighboring minimum they go. Sometimes this approach is also called dynamic MC or Stochastic Simulation Algorithm, in particular when it is applied to solving macroscopic rate equations. This book has two objectives. First, it is a primer on the kMC method (predominantly using the lattice-gas model) and thus much of the book will also be useful for applications other than to surface reactions. Second, it is intended to teach the reader what can be learned from kMC simulations of surface reaction kinetics. With these goals in mind, the present text is conceived as a self-contained introduction for students and non-specialist researchers alike who are interested in entering the field and learning about the topic from scratch.
Computational Many-Particle Physics
Author: Holger Fehske
Publisher: Springer
ISBN: 3540746862
Category : Science
Languages : en
Pages : 774
Book Description
Looking for the real state of play in computational many-particle physics? Look no further. This book presents an overview of state-of-the-art numerical methods for studying interacting classical and quantum many-particle systems. A broad range of techniques and algorithms are covered, and emphasis is placed on their implementation on modern high-performance computers. This excellent book comes complete with online files and updates allowing readers to stay right up to date.
Publisher: Springer
ISBN: 3540746862
Category : Science
Languages : en
Pages : 774
Book Description
Looking for the real state of play in computational many-particle physics? Look no further. This book presents an overview of state-of-the-art numerical methods for studying interacting classical and quantum many-particle systems. A broad range of techniques and algorithms are covered, and emphasis is placed on their implementation on modern high-performance computers. This excellent book comes complete with online files and updates allowing readers to stay right up to date.
Monte Carlo Methods In Ab Initio Quantum Chemistry
Author: Brian L Hammond
Publisher: World Scientific
ISBN: 9814506753
Category : Science
Languages : en
Pages : 320
Book Description
This book presents the basic theory and application of the Monte Carlo method to the electronic structure of atoms and molecules. It assumes no previous knowledge of the subject, only a knowledge of molecular quantum mechanics at the first-year graduate level. A working knowledge of traditional ab initio quantum chemistry is helpful, but not essential.Some distinguishing features of this book are:
Publisher: World Scientific
ISBN: 9814506753
Category : Science
Languages : en
Pages : 320
Book Description
This book presents the basic theory and application of the Monte Carlo method to the electronic structure of atoms and molecules. It assumes no previous knowledge of the subject, only a knowledge of molecular quantum mechanics at the first-year graduate level. A working knowledge of traditional ab initio quantum chemistry is helpful, but not essential.Some distinguishing features of this book are: