Monitored Energy Use of Homes with Geothermal Heat Pumps

Monitored Energy Use of Homes with Geothermal Heat Pumps PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 37

Get Book Here

Book Description
The performance of residential geothermal heat pumps (GHPs) was assessed by comparing heating, ventilation, and air conditioning (HVAC) system and whole house energy use of GHP houses and control houses. Actual energy savings were calculated and compared to expected savings (based on ARI ratings and literature) and predicted savings (based on coefficient of performance - COP - measurements). Differences between GHP and control houses were normalized for heating degree days and floor area or total insulation value. Predicted savings were consistently slightly below expected savings but within the range of performance cited by the industry. Average rated COP was 3.4. Average measured COP was 3.1. Actual savings were inconsistent and sometimes significantly below predicted savings. No correlation was found between actual savings and actual energy use. This suggests that factors such as insulation and occupant behavior probably have greater impact on energy use than type of HVAC equipment. There was also no clear correlation between climate and actual savings or between climate and actual energy use. There was a trend between GHP installation date and savings. Newer units appear to have lower savings than some of the older units which is opposite of what one would expect given the increase in rated efficiencies of GHPs. There are a number of explanations for why actual savings are repeatedly below rated savings or predicted savings. Poor ground loop sizing or installation procedures could be an issue. Given that performance is good compared to ASHPs but poor compared to electric resistance homes, the shortfall in savings could be due to duct leakage. The takeback effect could also be a reason for lower than expected savings. Occupants of heat pump homes are likely to heat more rooms and to use more air-conditioning than occupants of electric resistance homes. 10 refs., 17 figs., 10 tabs.

Monitored Energy Use of Homes with Geothermal Heat Pumps

Monitored Energy Use of Homes with Geothermal Heat Pumps PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 37

Get Book Here

Book Description
The performance of residential geothermal heat pumps (GHPs) was assessed by comparing heating, ventilation, and air conditioning (HVAC) system and whole house energy use of GHP houses and control houses. Actual energy savings were calculated and compared to expected savings (based on ARI ratings and literature) and predicted savings (based on coefficient of performance - COP - measurements). Differences between GHP and control houses were normalized for heating degree days and floor area or total insulation value. Predicted savings were consistently slightly below expected savings but within the range of performance cited by the industry. Average rated COP was 3.4. Average measured COP was 3.1. Actual savings were inconsistent and sometimes significantly below predicted savings. No correlation was found between actual savings and actual energy use. This suggests that factors such as insulation and occupant behavior probably have greater impact on energy use than type of HVAC equipment. There was also no clear correlation between climate and actual savings or between climate and actual energy use. There was a trend between GHP installation date and savings. Newer units appear to have lower savings than some of the older units which is opposite of what one would expect given the increase in rated efficiencies of GHPs. There are a number of explanations for why actual savings are repeatedly below rated savings or predicted savings. Poor ground loop sizing or installation procedures could be an issue. Given that performance is good compared to ASHPs but poor compared to electric resistance homes, the shortfall in savings could be due to duct leakage. The takeback effect could also be a reason for lower than expected savings. Occupants of heat pump homes are likely to heat more rooms and to use more air-conditioning than occupants of electric resistance homes. 10 refs., 17 figs., 10 tabs.

Monitored Performance of Residential Geothermal Heat Pumps in Central Texas and Southern Michigan

Monitored Performance of Residential Geothermal Heat Pumps in Central Texas and Southern Michigan PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 47

Get Book Here

Book Description
This report summarizes measured performance of residential geothermal heat pumps (GHP's) that were installed in family housing units at Ft. Hood, Texas and at Selfridge Air National Guard base in Michigan. These units were built as part of a joint Department of Defense/Department of Energy program to evaluate the energy savings potential of GHP's installed at military facilities. At the Ft. Hood site, the GHP performance was compared to conventional forced air electric air conditioning and natural gas heating. At Selfridge, the homes under test were originally equipped with electric baseboard heat and no air conditioning. Installation of the GHP systems at both sites was straightforward but more problems and costs were incurred at Selfridge because of the need to install ductwork in the homes. The GHP's at both sites produced impressive energy savings. These savings approached 40% for most of the homes tested. The low cost of energy on these bases relative to the incremental cost of the GHP conversions precludes rapid payback of the GHP's from energy savings alone. Estimates based on simple payback (no inflation and no interest on capital) indicated payback times from 15 to 20 years at both sites. These payback times may be reduced by considering the additional savings possible due to reduced maintenance costs. Results are summarized in terms of 15 minute, hourly, monthly, and annual performance parameters. The results indicate that all the systems were working properly but several design shortcomings were identified. Recommendations are made for improvements in future installations at both sites.

The Monitoring and Evaluation of Geothermal Systems

The Monitoring and Evaluation of Geothermal Systems PDF Author: Whitney E. Maynard
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
ABSTRACT: With the heightened importance of green engineering in today's society, harnessing the Earth's internal energy has become ever more important. Specifically, the use of geothermal heat pumps as a means of heating and cooling homes and municipal buildings is on the rise. However, due to the high cost of installation and limited amount of research conducted, geothermal systems in the State of Florida have yet to meet their potential as an alternative heating and cooling source. With Florida's relatively constant ground temperature of 72°F, an above average temperature gradient for both heating and cooling of indoor areas is provided. To this end, this thesis investigates different geothermal systems and their ability to utilize ground energy storage. To conduct this research, four different geothermal systems were installed and monitored over a period of one year. Testing of the installed systems monitored not only overall efficiency, but also the soils reaction to heightened energy input. Conclusions and recommendations are made as general design parameters for vertical column geothermal well systems in the state of Florida.

Small Geothermal Energy Systems and Geothermal Heat Pumps

Small Geothermal Energy Systems and Geothermal Heat Pumps PDF Author: Department of Energy (DOE)
Publisher:
ISBN: 9781521057148
Category :
Languages : en
Pages : 174

Get Book Here

Book Description
This comprehensive compilation of DOE documents provides unique and practical information about geothermal heat pumps, including small geothermal systems and DIY systems. Contents: Chapter 1: Small Geothermal Systems: A Guide For The Do-It-Yourselfer * Chapter 2: Using The Earth To Heat and Cool Buildings * Chapter 3: An Information Survival Kit For The Prospective Geothermal Heat Pump Owner * Chapter 4: Success Stories of the Geothermal Energy Program * Chapter 5: Ground-Source Heat Pumps: Overview of Market Status, Barriers to Adoption, and Options for Overcoming Barriers A heat pump-like an air conditioner or refrigerator-moves heat from one place to another. In the summer, a geothermal heat pump (GHP) operating in a cooling mode lowers indoor temperatures by transferring heat from inside a building to the ground outside or below it. Unlike an air conditioner, though, a heat pump's process can be reversed. In the winter, a GHP extracts heat from the ground and transfers it inside. Also, the GHP can use waste heat from summer air-conditioning to provide virtually free hot-water heating. The energy value of the heat moved is typically more than three times the electricity used in the transfer process. GHPs are efficient and require no backup heat because the earth stays at a relatively moderate temperature throughout the year. A GHP system has three major components: a ground loop (buried piping system), the heat pump itself (inside the house), and a heating and cooling distribution system. There are two main types of GHP systems. The earth-coupled (or closed-loop) GHP uses sealed horizontal or vertical pipes as heat exchangers through which water, or water and antifreeze, transfer heat to or from the ground. The second type, the water-source (or open-loop) GHP, pumps water from a well or other source to the heat exchanger, then back to the source. Because of their versatility, earth-coupled systems dominate the GHP market. Typical loop installations for the earth-coupled systems are expected to work for 50 years. More than 400,000 GHPs are operating in homes, schools, and commercial buildings in the United States. They are adaptable to virtually any kind of building; the Federal government has installed nearly 10,000 GHPs. Geothermal resources are available across the United States at varying depths, providing a ubiquitous buried treasure of domestic renewable energy. Enormous amounts of hydrothermal geothermal energy is available in the western United States, but theoretically, geothermal sources are available across the United States. The key to being able to use geothermal energy is to find a way to enhance geothermal systems lacking key natural characteristics. Natural geothermal systems depend on three factors to produce energy: heat, water, and permeability. While heat is present virtually everywhere at depth, water and permeability are less abundant. Geothermal technology is an attractive renewable resource because it can provide a constant source of renewable baseload electricity. While the sun and wind offer a large potential source of renewable energy that varies over time, geothermal technology is uninterruptible and can provide a stable baseload form of energy while diversifying the nation's renewable portfolio. Geothermal energy has low environmental risk and impact. When used with a closed-loop binary power plant, geothermal systems emit zero greenhouse gas emissions and have a near zero environmental risk or impact.

Geothermal Heat Pump Systems

Geothermal Heat Pump Systems PDF Author: David Borge-Diez
Publisher: Springer Nature
ISBN: 3031245245
Category : Technology & Engineering
Languages : en
Pages : 326

Get Book Here

Book Description
This book presents an overview of geothermal heating systems using ground source heat pumps in different countries. It evaluates the emissions and energy costs generated by the operation of low enthalpy geothermal systems, with heat pumps fed by different energy sources, and assesses, from an international point of view, those policies whose aim is a sustainable, low-carbon economy. The use of low-impact energy sources is gradually growing with the aim of reducing greenhouse gases emission and air pollution. The alternatives offered by geothermal systems are one of the key solutions for a future renewable development, enabling the electrification of heating systems and the use of biofuels. The book will be of interest to energy professionals and researchers.

Technology Solutions Case Study

Technology Solutions Case Study PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

Geothermal Heat Pumps: Installation Guide

Geothermal Heat Pumps: Installation Guide PDF Author: Stephen K. Ewings
Publisher: Stephen K Ewings
ISBN: 0646503782
Category : House & Home
Languages : en
Pages : 246

Get Book Here

Book Description


An In-Depth Look at Ground Source Heat Pumps and Other Electric Loads in Two GreenMax Homes

An In-Depth Look at Ground Source Heat Pumps and Other Electric Loads in Two GreenMax Homes PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 49

Get Book Here

Book Description
Building America research team Consortium for Advanced Residential Buildings (CARB) partnered with WPPI Energy to answer key research questions on in-field performance of ground-source heat pumps and lighting, appliance, and miscellaneous loads (LAMELs) through extensive field monitoring at two WPPI GreenMax demonstration homes in Wisconsin. These two test home evaluations provided valuable data on the true in-field performance of various building mechanical systems and LAMELs.

Modern Geothermal HVAC Engineering and Control Applications

Modern Geothermal HVAC Engineering and Control Applications PDF Author: Jay Egg
Publisher: McGraw Hill Professional
ISBN: 0071792694
Category : Technology & Engineering
Languages : en
Pages : 448

Get Book Here

Book Description
Best practices for the design and engineering of geothermal HVAC systems With a focus on market needs and customer goals, this practical guide explains how to realize the full potential of geothermal HVAC by integrating hydronic systems and controls at maximum capacity. Modern Geothermal HVAC: Engineering and Control Applications explains how to engineer and specify geothermal HVAC for building projects in varying geographic regions. Typical details on control parameters are provided. By using the proven methods in this innovative resource, you will be able to develop highly efficient, long-lasting, and aesthetically pleasing geothermal HVAC systems. Coverage includes: Low-temperature geothermal or earth coupling Geothermal heat-pump equipment Variations in earth coupling Application of earth coupling with regard to site conditions Closed-loop earth coupling and fusion Intermediate heat exchanger usage in geothermal applications Standing column and open geothermal systems Fundamentals of comfort, psychrometrics, and thermodynamics Hydronic and air HVAC system basics Hydronic HVAC system equipment Variations and improvements to hydronic systems Control systems Load sharing and energy recovery Calculating system efficiencies, heat gain, and loss Geothermal rebates, incentives, and renewables legislation

High Performance Homes That Use 50% Less Energy Than the DOE Building America Benchmark Building

High Performance Homes That Use 50% Less Energy Than the DOE Building America Benchmark Building PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This document describes lessons learned from designing, building, and monitoring five affordable, energy-efficient test houses in a single development in the Tennessee Valley Authority (TVA) service area. This work was done through a collaboration of Habitat for Humanity Loudon County, the US Department of Energy (DOE), TVA, and Oak Ridge National Laboratory (ORNL). The houses were designed by a team led by ORNL and were constructed by Habitat's volunteers in Lenoir City, Tennessee. ZEH5, a two-story house and the last of the five test houses to be built, provided an excellent model for conducting research on affordable high-performance houses. The impressively low energy bills for this house have generated considerable interest from builders and homeowners around the country who wanted a similar home design that could be adapted to different climates. Because a design developed without the project constraints of ZEH5 would have more appeal for the mass market, plans for two houses were developed from ZEH5: a one-story design (ZEH6) and a two-story design (ZEH7). This report focuses on ZEH6, identical to ZEH5 except that the geothermal heat pump is replaced with a SEER 16 air source unit (like that used in ZEH4). The report also contains plans for the ZEH6 house. ZEH5 and ZEH6 both use 50% less energy than the DOE Building America protocol for energyefficient buildings. ZEH5 is a 4 bedroom, 2.5 bath, 2632 ft2 house with a home energy rating system (HERS) index of 43, which qualifies it for federal energy-efficiency incentives (a HERS rating of 0 is a zero-energy house, and a conventional new house would have a HERS rating of 100). This report is intended to help builders and homeowners build similar high-performance houses. Detailed specifications for the envelope and the equipment used in ZEH5 are compared with the Building America Benchmark building, and detailed drawings, specifications, and lessons learned in the construction and analysis of data gleaned from 94 sensors installed in ZEH5 to monitor electric sub-metered usage, temperature and relative humidity, hot water usage, and heat pump operation for 1 year are presented. This information should be particularly useful to those considering structural insulated panel (SIP) walls and roofing; foundation geothermal heat pumps for space heating and cooling; solar water heaters; and roof-mounted, grid-tied photovoltaic systems. The document includes plans for ZEH6 (adapted from ZEH5), a one-story, high-performance house, as well as projections of how the design might perform in five major metropolitan areas across the TVA service territory. The HERS ratings for this all-electric house vary from 36 (Memphis, Tennessee) to 46 (Bristol, Tennessee).