Author: Henry J. Landau
Publisher: American Mathematical Soc.
ISBN: 9780821801147
Category : Inequalities
Languages : en
Pages : 170
Book Description
Function theory, spectral decomposition of operators, probability, approximation, electrical and mechanical inverse problems, prediction of stochastic processes, the design of algorithms for signal-processing VLSI chips--these are among a host of important theoretical and applied topics illuminated by the classical moment problem. To survey some of these ramifications and the research which derives from them, the AMS sponsored the Short Course Moments in Mathematics at the Joint Mathematics Meetings, held in San Antonio, Texas, in January 1987. This volume contains the six lectures presented during that course. The papers are likely to find a wide audience, for they are expository, but nevertheless lead the reader to topics of current research. In his paper, Henry J. Landau sketches the main ideas of past work related to the moment problem by such mathematicians as Caratheodory, Herglotz, Schur, Riesz, and Krein and describes the way the moment problem has interconnected so many diverse areas of research. J. H. B. Kemperman examines the moment problem from a geometric viewpoint which involves a certain natural duality method and leads to interesting applications in linear programming, measure theory, and dilations. Donald Sarason first provides a brief review of the theory of unbounded self-adjoint operators then goes on to sketch the operator-theoretic treatment of the Hamburger problem and to discuss Hankel operators, the Adamjan-Arov-Krein approach, and the theory of unitary dilations. Exploring the interplay of trigonometric moment problems and signal processing, Thomas Kailath describes the role of Szego polynomials in linear predictive coding methods, parallel implementation, one-dimensional inverse scattering problems, and the Toeplitz moment matrices. Christian Berg contrasts the multi-dimensional moment problem with the one-dimensional theory and shows how the theory of the moment problem may be viewed as part of harmonic analysis on semigroups. Starting from a historical survey of the use of moments in probability and statistics, Persi Diaconis illustrates the continuing vitality of these methods in a variety of recent novel problems drawn from such areas as Wiener-Ito integrals, random graphs and matrices, Gibbs ensembles, cumulants and self-similar processes, projections of high-dimensional data, and empirical estimation.
Moments in Mathematics
Author: Henry J. Landau
Publisher: American Mathematical Soc.
ISBN: 9780821801147
Category : Inequalities
Languages : en
Pages : 170
Book Description
Function theory, spectral decomposition of operators, probability, approximation, electrical and mechanical inverse problems, prediction of stochastic processes, the design of algorithms for signal-processing VLSI chips--these are among a host of important theoretical and applied topics illuminated by the classical moment problem. To survey some of these ramifications and the research which derives from them, the AMS sponsored the Short Course Moments in Mathematics at the Joint Mathematics Meetings, held in San Antonio, Texas, in January 1987. This volume contains the six lectures presented during that course. The papers are likely to find a wide audience, for they are expository, but nevertheless lead the reader to topics of current research. In his paper, Henry J. Landau sketches the main ideas of past work related to the moment problem by such mathematicians as Caratheodory, Herglotz, Schur, Riesz, and Krein and describes the way the moment problem has interconnected so many diverse areas of research. J. H. B. Kemperman examines the moment problem from a geometric viewpoint which involves a certain natural duality method and leads to interesting applications in linear programming, measure theory, and dilations. Donald Sarason first provides a brief review of the theory of unbounded self-adjoint operators then goes on to sketch the operator-theoretic treatment of the Hamburger problem and to discuss Hankel operators, the Adamjan-Arov-Krein approach, and the theory of unitary dilations. Exploring the interplay of trigonometric moment problems and signal processing, Thomas Kailath describes the role of Szego polynomials in linear predictive coding methods, parallel implementation, one-dimensional inverse scattering problems, and the Toeplitz moment matrices. Christian Berg contrasts the multi-dimensional moment problem with the one-dimensional theory and shows how the theory of the moment problem may be viewed as part of harmonic analysis on semigroups. Starting from a historical survey of the use of moments in probability and statistics, Persi Diaconis illustrates the continuing vitality of these methods in a variety of recent novel problems drawn from such areas as Wiener-Ito integrals, random graphs and matrices, Gibbs ensembles, cumulants and self-similar processes, projections of high-dimensional data, and empirical estimation.
Publisher: American Mathematical Soc.
ISBN: 9780821801147
Category : Inequalities
Languages : en
Pages : 170
Book Description
Function theory, spectral decomposition of operators, probability, approximation, electrical and mechanical inverse problems, prediction of stochastic processes, the design of algorithms for signal-processing VLSI chips--these are among a host of important theoretical and applied topics illuminated by the classical moment problem. To survey some of these ramifications and the research which derives from them, the AMS sponsored the Short Course Moments in Mathematics at the Joint Mathematics Meetings, held in San Antonio, Texas, in January 1987. This volume contains the six lectures presented during that course. The papers are likely to find a wide audience, for they are expository, but nevertheless lead the reader to topics of current research. In his paper, Henry J. Landau sketches the main ideas of past work related to the moment problem by such mathematicians as Caratheodory, Herglotz, Schur, Riesz, and Krein and describes the way the moment problem has interconnected so many diverse areas of research. J. H. B. Kemperman examines the moment problem from a geometric viewpoint which involves a certain natural duality method and leads to interesting applications in linear programming, measure theory, and dilations. Donald Sarason first provides a brief review of the theory of unbounded self-adjoint operators then goes on to sketch the operator-theoretic treatment of the Hamburger problem and to discuss Hankel operators, the Adamjan-Arov-Krein approach, and the theory of unitary dilations. Exploring the interplay of trigonometric moment problems and signal processing, Thomas Kailath describes the role of Szego polynomials in linear predictive coding methods, parallel implementation, one-dimensional inverse scattering problems, and the Toeplitz moment matrices. Christian Berg contrasts the multi-dimensional moment problem with the one-dimensional theory and shows how the theory of the moment problem may be viewed as part of harmonic analysis on semigroups. Starting from a historical survey of the use of moments in probability and statistics, Persi Diaconis illustrates the continuing vitality of these methods in a variety of recent novel problems drawn from such areas as Wiener-Ito integrals, random graphs and matrices, Gibbs ensembles, cumulants and self-similar processes, projections of high-dimensional data, and empirical estimation.
Great Moments in Mathematics Before 1650
Author: Howard Eves
Publisher: American Mathematical Soc.
ISBN: 1614442142
Category : Mathematics
Languages : en
Pages : 270
Book Description
Great Moments in Mathematics: Before 1650 is the product of a series of lectures on the history of mathematics given by Howard Eves. He presents here, in chronological order, 20 ``great moments in mathematics before 1650'', which can be appreciated by anyone who enjoys mathematics. These wonderful lectures could be used as the basis of a course on the history of mathematics but can also serve as enrichment to any mathematics course. Included are lectures on the Pythagorean Theorem, Euclid's Elements, Archimedes (on the sphere), Diophantus, Omar Khayyam, and Fibonacci.
Publisher: American Mathematical Soc.
ISBN: 1614442142
Category : Mathematics
Languages : en
Pages : 270
Book Description
Great Moments in Mathematics: Before 1650 is the product of a series of lectures on the history of mathematics given by Howard Eves. He presents here, in chronological order, 20 ``great moments in mathematics before 1650'', which can be appreciated by anyone who enjoys mathematics. These wonderful lectures could be used as the basis of a course on the history of mathematics but can also serve as enrichment to any mathematics course. Included are lectures on the Pythagorean Theorem, Euclid's Elements, Archimedes (on the sphere), Diophantus, Omar Khayyam, and Fibonacci.
Moments in Mathematics Coaching
Author: Kristine Reed Woleck
Publisher: Corwin Press
ISBN: 1412965845
Category : Education
Languages : en
Pages : 185
Book Description
Using a case-based approach, Moments in Mathematics Coaching helps readers examine the possibilities of their position and develop a range of images of the work of mathematics coaching. The cases and author narrative illustrate how to implement specific coaching strategies and make transparent to the reader the reflection and decision-making elements of coaching. In this way the author, an experienced mathematics coach and coach-educator, effectively models the reflective nature of the work and the power of such reflection for continual growth. The book communicates the challenges and successes of mathematics coaching and provides a wide range of strategies, tips, and guidelines. This resource may be used by individuals or by a book study group of mathematics coaches.
Publisher: Corwin Press
ISBN: 1412965845
Category : Education
Languages : en
Pages : 185
Book Description
Using a case-based approach, Moments in Mathematics Coaching helps readers examine the possibilities of their position and develop a range of images of the work of mathematics coaching. The cases and author narrative illustrate how to implement specific coaching strategies and make transparent to the reader the reflection and decision-making elements of coaching. In this way the author, an experienced mathematics coach and coach-educator, effectively models the reflective nature of the work and the power of such reflection for continual growth. The book communicates the challenges and successes of mathematics coaching and provides a wide range of strategies, tips, and guidelines. This resource may be used by individuals or by a book study group of mathematics coaches.
Great Moments in Mathematics
Author: Howard Eves
Publisher: American Mathematical Soc.
ISBN: 1614442150
Category : Mathematics
Languages : en
Pages : 263
Book Description
Publisher: American Mathematical Soc.
ISBN: 1614442150
Category : Mathematics
Languages : en
Pages : 263
Book Description
Creativity of an Aha! Moment and Mathematics Education
Author:
Publisher: BRILL
ISBN: 9004446435
Category : Education
Languages : en
Pages : 491
Book Description
Creativity of an Aha!Moment and Mathematics Education introduces bisociation, the theory of Aha! moment creativity into Mathematics Education. It establishes relationships between bisociation and constructivist theories of learning laying down the basis for the new theory integrating creativity with learning.
Publisher: BRILL
ISBN: 9004446435
Category : Education
Languages : en
Pages : 491
Book Description
Creativity of an Aha!Moment and Mathematics Education introduces bisociation, the theory of Aha! moment creativity into Mathematics Education. It establishes relationships between bisociation and constructivist theories of learning laying down the basis for the new theory integrating creativity with learning.
Moments, Positive Polynomials and Their Applications
Author: Jean-Bernard Lasserre
Publisher: World Scientific
ISBN: 1848164467
Category : Mathematics
Languages : en
Pages : 384
Book Description
1. The generalized moment problem. 1.1. Formulations. 1.2. Duality theory. 1.3. Computational complexity. 1.4. Summary. 1.5. Exercises. 1.6. Notes and sources -- 2. Positive polynomials. 2.1. Sum of squares representations and semi-definite optimization. 2.2. Nonnegative versus s.o.s. polynomials. 2.3. Representation theorems : univariate case. 2.4. Representation theorems : mutivariate case. 2.5. Polynomials positive on a compact basic semi-algebraic set. 2.6. Polynomials nonnegative on real varieties. 2.7. Representations with sparsity properties. 2.8. Representation of convex polynomials. 2.9. Summary. 2.10. Exercises. 2.11. Notes and sources -- 3. Moments. 3.1. The one-dimensional moment problem. 3.2. The multi-dimensional moment problem. 3.3. The K-moment problem. 3.4. Moment conditions for bounded density. 3.5. Summary. 3.6. Exercises. 3.7. Notes and sources -- 4. Algorithms for moment problems. 4.1. The overall approach. 4.2. Semidefinite relaxations. 4.3. Extraction of solutions. 4.4. Linear relaxations. 4.5. Extensions. 4.6. Exploiting sparsity. 4.7. Summary. 4.8. Exercises. 4.9. Notes and sources. 4.10. Proofs -- 5. Global optimization over polynomials. 5.1. The primal and dual perspectives. 5.2. Unconstrained polynomial optimization. 5.3. Constrained polynomial optimization : semidefinite relaxations. 5.4. Linear programming relaxations. 5.5. Global optimality conditions. 5.6. Convex polynomial programs. 5.7. Discrete optimization. 5.8. Global minimization of a rational function. 5.9. Exploiting symmetry. 5.10. Summary. 5.11. Exercises. 5.12. Notes and sources -- 6. Systems of polynomial equations. 6.1. Introduction. 6.2. Finding a real solution to systems of polynomial equations. 6.3. Finding all complex and/or all real solutions : a unified treatment. 6.4. Summary. 6.5. Exercises. 6.6. Notes and sources -- 7. Applications in probability. 7.1. Upper bounds on measures with moment conditions. 7.2. Measuring basic semi-algebraic sets. 7.3. Measures with given marginals. 7.4. Summary. 7.5. Exercises. 7.6. Notes and sources -- 8. Markov chains applications. 8.1. Bounds on invariant measures. 8.2. Evaluation of ergodic criteria. 8.3. Summary. 8.4. Exercises. 8.5. Notes and sources -- 9. Application in mathematical finance. 9.1. Option pricing with moment information. 9.2. Option pricing with a dynamic model. 9.3. Summary. 9.4. Notes and sources -- 10. Application in control. 10.1. Introduction. 10.2. Weak formulation of optimal control problems. 10.3. Semidefinite relaxations for the OCP. 10.4. Summary. 10.5. Notes and sources -- 11. Convex envelope and representation of convex sets. 11.1. The convex envelope of a rational function. 11.2. Semidefinite representation of convex sets. 11.3. Algebraic certificates of convexity. 11.4. Summary. 11.5. Exercises. 11.6. Notes and sources -- 12. Multivariate integration 12.1. Integration of a rational function. 12.2. Integration of exponentials of polynomials. 12.3. Maximum entropy estimation. 12.4. Summary. 12.5. Exercises. 12.6. Notes and sources -- 13. Min-max problems and Nash equilibria. 13.1. Robust polynomial optimization. 13.2. Minimizing the sup of finitely many rational cunctions. 13.3. Application to Nash equilibria. 13.4. Exercises. 13.5. Notes and sources -- 14. Bounds on linear PDE. 14.1. Linear partial differential equations. 14.2. Notes and sources
Publisher: World Scientific
ISBN: 1848164467
Category : Mathematics
Languages : en
Pages : 384
Book Description
1. The generalized moment problem. 1.1. Formulations. 1.2. Duality theory. 1.3. Computational complexity. 1.4. Summary. 1.5. Exercises. 1.6. Notes and sources -- 2. Positive polynomials. 2.1. Sum of squares representations and semi-definite optimization. 2.2. Nonnegative versus s.o.s. polynomials. 2.3. Representation theorems : univariate case. 2.4. Representation theorems : mutivariate case. 2.5. Polynomials positive on a compact basic semi-algebraic set. 2.6. Polynomials nonnegative on real varieties. 2.7. Representations with sparsity properties. 2.8. Representation of convex polynomials. 2.9. Summary. 2.10. Exercises. 2.11. Notes and sources -- 3. Moments. 3.1. The one-dimensional moment problem. 3.2. The multi-dimensional moment problem. 3.3. The K-moment problem. 3.4. Moment conditions for bounded density. 3.5. Summary. 3.6. Exercises. 3.7. Notes and sources -- 4. Algorithms for moment problems. 4.1. The overall approach. 4.2. Semidefinite relaxations. 4.3. Extraction of solutions. 4.4. Linear relaxations. 4.5. Extensions. 4.6. Exploiting sparsity. 4.7. Summary. 4.8. Exercises. 4.9. Notes and sources. 4.10. Proofs -- 5. Global optimization over polynomials. 5.1. The primal and dual perspectives. 5.2. Unconstrained polynomial optimization. 5.3. Constrained polynomial optimization : semidefinite relaxations. 5.4. Linear programming relaxations. 5.5. Global optimality conditions. 5.6. Convex polynomial programs. 5.7. Discrete optimization. 5.8. Global minimization of a rational function. 5.9. Exploiting symmetry. 5.10. Summary. 5.11. Exercises. 5.12. Notes and sources -- 6. Systems of polynomial equations. 6.1. Introduction. 6.2. Finding a real solution to systems of polynomial equations. 6.3. Finding all complex and/or all real solutions : a unified treatment. 6.4. Summary. 6.5. Exercises. 6.6. Notes and sources -- 7. Applications in probability. 7.1. Upper bounds on measures with moment conditions. 7.2. Measuring basic semi-algebraic sets. 7.3. Measures with given marginals. 7.4. Summary. 7.5. Exercises. 7.6. Notes and sources -- 8. Markov chains applications. 8.1. Bounds on invariant measures. 8.2. Evaluation of ergodic criteria. 8.3. Summary. 8.4. Exercises. 8.5. Notes and sources -- 9. Application in mathematical finance. 9.1. Option pricing with moment information. 9.2. Option pricing with a dynamic model. 9.3. Summary. 9.4. Notes and sources -- 10. Application in control. 10.1. Introduction. 10.2. Weak formulation of optimal control problems. 10.3. Semidefinite relaxations for the OCP. 10.4. Summary. 10.5. Notes and sources -- 11. Convex envelope and representation of convex sets. 11.1. The convex envelope of a rational function. 11.2. Semidefinite representation of convex sets. 11.3. Algebraic certificates of convexity. 11.4. Summary. 11.5. Exercises. 11.6. Notes and sources -- 12. Multivariate integration 12.1. Integration of a rational function. 12.2. Integration of exponentials of polynomials. 12.3. Maximum entropy estimation. 12.4. Summary. 12.5. Exercises. 12.6. Notes and sources -- 13. Min-max problems and Nash equilibria. 13.1. Robust polynomial optimization. 13.2. Minimizing the sup of finitely many rational cunctions. 13.3. Application to Nash equilibria. 13.4. Exercises. 13.5. Notes and sources -- 14. Bounds on linear PDE. 14.1. Linear partial differential equations. 14.2. Notes and sources
Matrices, Moments and Quadrature with Applications
Author: Gene H. Golub
Publisher: Princeton University Press
ISBN: 1400833884
Category : Mathematics
Languages : en
Pages : 376
Book Description
This computationally oriented book describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms. The book bridges different mathematical areas to obtain algorithms to estimate bilinear forms involving two vectors and a function of the matrix. The first part of the book provides the necessary mathematical background and explains the theory. The second part describes the applications and gives numerical examples of the algorithms and techniques developed in the first part. Applications addressed in the book include computing elements of functions of matrices; obtaining estimates of the error norm in iterative methods for solving linear systems and computing parameters in least squares and total least squares; and solving ill-posed problems using Tikhonov regularization. This book will interest researchers in numerical linear algebra and matrix computations, as well as scientists and engineers working on problems involving computation of bilinear forms.
Publisher: Princeton University Press
ISBN: 1400833884
Category : Mathematics
Languages : en
Pages : 376
Book Description
This computationally oriented book describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms. The book bridges different mathematical areas to obtain algorithms to estimate bilinear forms involving two vectors and a function of the matrix. The first part of the book provides the necessary mathematical background and explains the theory. The second part describes the applications and gives numerical examples of the algorithms and techniques developed in the first part. Applications addressed in the book include computing elements of functions of matrices; obtaining estimates of the error norm in iterative methods for solving linear systems and computing parameters in least squares and total least squares; and solving ill-posed problems using Tikhonov regularization. This book will interest researchers in numerical linear algebra and matrix computations, as well as scientists and engineers working on problems involving computation of bilinear forms.
The Problem of Moments
Author: James Alexander Shohat
Publisher: American Mathematical Soc.
ISBN: 0821815016
Category : Mathematics
Languages : en
Pages : 160
Book Description
The book was first published in 1943 and then was reprinted several times with corrections. It presents the development of the classical problem of moments for the first 50 years, after its introduction by Stieltjes in the 1890s. In addition to initial developments by Stieltjes, Markov, and Chebyshev, later contributions by Hamburger, Nevanlinna, Hausdorff, Stone, and others are discussed. The book also contains some results on the trigonometric moment problem and a chapter devoted to approximate quadrature formulas.
Publisher: American Mathematical Soc.
ISBN: 0821815016
Category : Mathematics
Languages : en
Pages : 160
Book Description
The book was first published in 1943 and then was reprinted several times with corrections. It presents the development of the classical problem of moments for the first 50 years, after its introduction by Stieltjes in the 1890s. In addition to initial developments by Stieltjes, Markov, and Chebyshev, later contributions by Hamburger, Nevanlinna, Hausdorff, Stone, and others are discussed. The book also contains some results on the trigonometric moment problem and a chapter devoted to approximate quadrature formulas.
The Moment Problem
Author: Konrad Schmüdgen
Publisher: Springer
ISBN: 3319645463
Category : Mathematics
Languages : en
Pages : 530
Book Description
This advanced textbook provides a comprehensive and unified account of the moment problem. It covers the classical one-dimensional theory and its multidimensional generalization, including modern methods and recent developments. In both the one-dimensional and multidimensional cases, the full and truncated moment problems are carefully treated separately. Fundamental concepts, results and methods are developed in detail and accompanied by numerous examples and exercises. Particular attention is given to powerful modern techniques such as real algebraic geometry and Hilbert space operators. A wide range of important aspects are covered, including the Nevanlinna parametrization for indeterminate moment problems, canonical and principal measures for truncated moment problems, the interplay between Positivstellensätze and moment problems on semi-algebraic sets, the fibre theorem, multidimensional determinacy theory, operator-theoretic approaches, and the existence theory and important special topics of multidimensional truncated moment problems. The Moment Problem will be particularly useful to graduate students and researchers working on moment problems, functional analysis, complex analysis, harmonic analysis, real algebraic geometry, polynomial optimization, or systems theory. With notes providing useful background information and exercises of varying difficulty illustrating the theory, this book will also serve as a reference on the subject and can be used for self-study.
Publisher: Springer
ISBN: 3319645463
Category : Mathematics
Languages : en
Pages : 530
Book Description
This advanced textbook provides a comprehensive and unified account of the moment problem. It covers the classical one-dimensional theory and its multidimensional generalization, including modern methods and recent developments. In both the one-dimensional and multidimensional cases, the full and truncated moment problems are carefully treated separately. Fundamental concepts, results and methods are developed in detail and accompanied by numerous examples and exercises. Particular attention is given to powerful modern techniques such as real algebraic geometry and Hilbert space operators. A wide range of important aspects are covered, including the Nevanlinna parametrization for indeterminate moment problems, canonical and principal measures for truncated moment problems, the interplay between Positivstellensätze and moment problems on semi-algebraic sets, the fibre theorem, multidimensional determinacy theory, operator-theoretic approaches, and the existence theory and important special topics of multidimensional truncated moment problems. The Moment Problem will be particularly useful to graduate students and researchers working on moment problems, functional analysis, complex analysis, harmonic analysis, real algebraic geometry, polynomial optimization, or systems theory. With notes providing useful background information and exercises of varying difficulty illustrating the theory, this book will also serve as a reference on the subject and can be used for self-study.
The Creative Use of Odd Moments
Author: Doug French
Publisher:
ISBN: 9780906588628
Category : Mathematical recreations
Languages : en
Pages : 80
Book Description
"Items, with minor amendments, are in the same form as when they were originally published in Mathematics in school between 1993 and 2001"--Intro.
Publisher:
ISBN: 9780906588628
Category : Mathematical recreations
Languages : en
Pages : 80
Book Description
"Items, with minor amendments, are in the same form as when they were originally published in Mathematics in school between 1993 and 2001"--Intro.