Author: Ben Lugtenberg
Publisher: Springer
ISBN: 3319085751
Category : Science
Languages : en
Pages : 447
Book Description
The use of microbial plant protection products is growing and their importance will strongly increase due to political and public pressure. World population is growing and the amount of food needed by 2050 will be double of what is produced now whereas the area of agricultural land is decreasing. We must increase crop yield in a sustainable way. Chemical plant growth promoters must be replaced by microbiological products. Also here, the use of microbial products is growing and their importance will strongly increase. A growing area of agricultural land is salinated. Global warming will increase this process. Plants growth is inhibited by salt or even made impossible and farmers tend to disuse the most salinated lands. Microbes have been very successfully used to alleviate salt stress of plants. Chemical pollution of land can make plant growth difficult and crops grown are often polluted and not suitable for consumption. Microbes have been used to degrade these chemical pollutants.
Principles of Plant-Microbe Interactions
Author: Ben Lugtenberg
Publisher: Springer
ISBN: 3319085751
Category : Science
Languages : en
Pages : 447
Book Description
The use of microbial plant protection products is growing and their importance will strongly increase due to political and public pressure. World population is growing and the amount of food needed by 2050 will be double of what is produced now whereas the area of agricultural land is decreasing. We must increase crop yield in a sustainable way. Chemical plant growth promoters must be replaced by microbiological products. Also here, the use of microbial products is growing and their importance will strongly increase. A growing area of agricultural land is salinated. Global warming will increase this process. Plants growth is inhibited by salt or even made impossible and farmers tend to disuse the most salinated lands. Microbes have been very successfully used to alleviate salt stress of plants. Chemical pollution of land can make plant growth difficult and crops grown are often polluted and not suitable for consumption. Microbes have been used to degrade these chemical pollutants.
Publisher: Springer
ISBN: 3319085751
Category : Science
Languages : en
Pages : 447
Book Description
The use of microbial plant protection products is growing and their importance will strongly increase due to political and public pressure. World population is growing and the amount of food needed by 2050 will be double of what is produced now whereas the area of agricultural land is decreasing. We must increase crop yield in a sustainable way. Chemical plant growth promoters must be replaced by microbiological products. Also here, the use of microbial products is growing and their importance will strongly increase. A growing area of agricultural land is salinated. Global warming will increase this process. Plants growth is inhibited by salt or even made impossible and farmers tend to disuse the most salinated lands. Microbes have been very successfully used to alleviate salt stress of plants. Chemical pollution of land can make plant growth difficult and crops grown are often polluted and not suitable for consumption. Microbes have been used to degrade these chemical pollutants.
Plant-Microbe Interactions
Author: B.B. Biswas
Publisher: Springer Science & Business Media
ISBN: 1489917071
Category : Science
Languages : en
Pages : 455
Book Description
Recent years have seen tremendous progress in unraveling the molecular basis of different plant-microbe interactions. Knowledge has accumulated on the mecha nisms of the microbial infection of plants, which can lead to either disease or resistance. The mechanisms developed by plants to interact with microbes, whether viruses, bacteria, or fungi, involve events that can lead to symbiotic association or to disease or tumor formation. Cell death caused by pathogen infection has been of great interest for many years because of its association with plant resistance. There appear to be two types of plant cell death associated with pathogen infection, a rapid hypersensitive cell death localized at the site of infection during an incompatible interaction between a resistant plant and an avirulent pathogen, and a slow, normosensitive plant cell death that spreads beyond the site of infection during some compatible interactions involving a susceptible plant and a virulent, necrogenic pathogen. Plants possess a number of defense mechanisms against infection, such as (i) production of phytoalexin, (ii) formation of hydrolases, (iii) accumulation of hydroxyproline-rich glycoprotein and lignin deposition, (iv) production of pathogen-related proteins, (v) produc tion of oligosaccharides, jasmonic acid, and various other phenolic substances, and (vi) production of toxin-metabolizing enzymes. Based on these observations, insertion of a single suitable gene in a particular plant has yielded promising results in imparting resistance against specific infection or disease. It appears that a signal received after microbe infection triggers different signal transduction pathways.
Publisher: Springer Science & Business Media
ISBN: 1489917071
Category : Science
Languages : en
Pages : 455
Book Description
Recent years have seen tremendous progress in unraveling the molecular basis of different plant-microbe interactions. Knowledge has accumulated on the mecha nisms of the microbial infection of plants, which can lead to either disease or resistance. The mechanisms developed by plants to interact with microbes, whether viruses, bacteria, or fungi, involve events that can lead to symbiotic association or to disease or tumor formation. Cell death caused by pathogen infection has been of great interest for many years because of its association with plant resistance. There appear to be two types of plant cell death associated with pathogen infection, a rapid hypersensitive cell death localized at the site of infection during an incompatible interaction between a resistant plant and an avirulent pathogen, and a slow, normosensitive plant cell death that spreads beyond the site of infection during some compatible interactions involving a susceptible plant and a virulent, necrogenic pathogen. Plants possess a number of defense mechanisms against infection, such as (i) production of phytoalexin, (ii) formation of hydrolases, (iii) accumulation of hydroxyproline-rich glycoprotein and lignin deposition, (iv) production of pathogen-related proteins, (v) produc tion of oligosaccharides, jasmonic acid, and various other phenolic substances, and (vi) production of toxin-metabolizing enzymes. Based on these observations, insertion of a single suitable gene in a particular plant has yielded promising results in imparting resistance against specific infection or disease. It appears that a signal received after microbe infection triggers different signal transduction pathways.
Plant-microbe Interactions 2
Author: Gary Stacey
Publisher: Springer Science & Business Media
ISBN: 1461560535
Category : Science
Languages : en
Pages : 238
Book Description
Plant-Microbe Interactions, Volume 2 Volume 1 of this series has made its appearance and dealt forcefully with impor tant current topics in the field of plant-microbe interactions. We believe that the quality of those chapters was high and should serve as a focal point for the state of the art as well as an enduring reference. Volume 2 builds upon these accom plishments. Chapter 1 discusses the fascinating lipo-chitin signal molecules from Rhizo bium, aspects regarding their biosynthesis, and the basis for host specificity. These molecules are a cardinal example of how microorganisms influence plant development and stimulate speculation that they have identified a previously un known aspect of plant hormone activity. Chapter 2 continues the discussion of Rhizobium by considering the trafficking of carbon and nitrogen in nodules. Al though the ostensible advantage of nodules to plants is the fixation of atmos pheric nitrogen, the actual process involved in supplying reduced nitrogen to the plant host is complex.
Publisher: Springer Science & Business Media
ISBN: 1461560535
Category : Science
Languages : en
Pages : 238
Book Description
Plant-Microbe Interactions, Volume 2 Volume 1 of this series has made its appearance and dealt forcefully with impor tant current topics in the field of plant-microbe interactions. We believe that the quality of those chapters was high and should serve as a focal point for the state of the art as well as an enduring reference. Volume 2 builds upon these accom plishments. Chapter 1 discusses the fascinating lipo-chitin signal molecules from Rhizo bium, aspects regarding their biosynthesis, and the basis for host specificity. These molecules are a cardinal example of how microorganisms influence plant development and stimulate speculation that they have identified a previously un known aspect of plant hormone activity. Chapter 2 continues the discussion of Rhizobium by considering the trafficking of carbon and nitrogen in nodules. Al though the ostensible advantage of nodules to plants is the fixation of atmos pheric nitrogen, the actual process involved in supplying reduced nitrogen to the plant host is complex.
Molecular Aspects of Plant-Pathogen Interaction
Author: Archana Singh
Publisher: Springer
ISBN: 9811073716
Category : Science
Languages : en
Pages : 367
Book Description
The book offers an integrated overview of plant–pathogen interactions. It discusses all the steps in the pathway, from the microbe–host-cell interface and the plant’s recognition of the microbe to the plant’s defense response and biochemical alterations to achieve tolerance / resistance. It also sheds light on the classes of pathogens (bacteria, fungus and viruses); effector molecules, such as PAMPs; receptor molecules like PRRs and NBS-LRR proteins; signaling components like MAPKs; regulatory molecules, such as phytohormones and miRNA; transcription factors, such as WRKY; defense-related proteins such as PR-proteins; and defensive metabolites like secondary metabolites. In addition, it examines the role of post-genomics, high-throughput technology (transcriptomics and proteomics) in studying pathogen outbreaks causing crop losses in a number of plants. Providing a comprehensive picture of plant-pathogen interaction, the updated information included in this book is valuable for all those involved in crop improvement.
Publisher: Springer
ISBN: 9811073716
Category : Science
Languages : en
Pages : 367
Book Description
The book offers an integrated overview of plant–pathogen interactions. It discusses all the steps in the pathway, from the microbe–host-cell interface and the plant’s recognition of the microbe to the plant’s defense response and biochemical alterations to achieve tolerance / resistance. It also sheds light on the classes of pathogens (bacteria, fungus and viruses); effector molecules, such as PAMPs; receptor molecules like PRRs and NBS-LRR proteins; signaling components like MAPKs; regulatory molecules, such as phytohormones and miRNA; transcription factors, such as WRKY; defense-related proteins such as PR-proteins; and defensive metabolites like secondary metabolites. In addition, it examines the role of post-genomics, high-throughput technology (transcriptomics and proteomics) in studying pathogen outbreaks causing crop losses in a number of plants. Providing a comprehensive picture of plant-pathogen interaction, the updated information included in this book is valuable for all those involved in crop improvement.
Advances in Molecular Genetics of Plant-Microbe Interactions, Vol. 2
Author: E.W. Nester
Publisher: Springer Science & Business Media
ISBN: 9401706514
Category : Science
Languages : en
Pages : 578
Book Description
Research on the interaction between plants and microbes continues to attract increasing attention, both within the field as well as in the scientific community at large. Many of the major scientific journals have recently reviewed various aspects of the field. Several papers dealing with plant-microbe interactions have been featured on the covers of scientific publications in the past several months, and the lay press have recently presented feature articles of this field. An additional sign of the interest in this field is that the International Society of Molecular Plant-Microbe Interactions has almost 500 members. This book is a collection of the papers that were given at the Sixth Inlernational Symposium on the Molecular Genetics of Plant-Microbe Interactions which was held in Seattle, Washington in July, 1992. Approximately 650 scientists attended and approximately 50 lectures covering the topics of Agrobacterium-plant interactions, Rhizobium-plant interactions, bacteria-plant interactions, fungal-plant interactions and new aspects of biotechnology were presented. In addition, many sessions were devoted to the plant response to the microbe. Over 400 posters were presented of which the authors of 20 were selected to give an oral presentation. These papers are included in this volume as well. The symposium also included speakers whose research interests are not directly related to plant-microbe interactions but who are at the cutting edge of research areas that impact on the theme of the symposium. These individuals kindly agreed to summarize their talks and their papers are also included.
Publisher: Springer Science & Business Media
ISBN: 9401706514
Category : Science
Languages : en
Pages : 578
Book Description
Research on the interaction between plants and microbes continues to attract increasing attention, both within the field as well as in the scientific community at large. Many of the major scientific journals have recently reviewed various aspects of the field. Several papers dealing with plant-microbe interactions have been featured on the covers of scientific publications in the past several months, and the lay press have recently presented feature articles of this field. An additional sign of the interest in this field is that the International Society of Molecular Plant-Microbe Interactions has almost 500 members. This book is a collection of the papers that were given at the Sixth Inlernational Symposium on the Molecular Genetics of Plant-Microbe Interactions which was held in Seattle, Washington in July, 1992. Approximately 650 scientists attended and approximately 50 lectures covering the topics of Agrobacterium-plant interactions, Rhizobium-plant interactions, bacteria-plant interactions, fungal-plant interactions and new aspects of biotechnology were presented. In addition, many sessions were devoted to the plant response to the microbe. Over 400 posters were presented of which the authors of 20 were selected to give an oral presentation. These papers are included in this volume as well. The symposium also included speakers whose research interests are not directly related to plant-microbe interactions but who are at the cutting edge of research areas that impact on the theme of the symposium. These individuals kindly agreed to summarize their talks and their papers are also included.
Genes Involved in Plant Defense
Author: Thomas Boller
Publisher: Springer Science & Business Media
ISBN: 3709166845
Category : Science
Languages : en
Pages : 368
Book Description
Many fungi and bacteria that associate with plants are potentially harmful and can cause disease, while others enter into mutually beneficial sym bioses. Co-evolution of plants with pathogenic and symbiotic microbes has lead to refined mechanisms of reciprocal recognition, defense and counter defense. Genes in both partners determine and regulate these mechanisms. A detailed understanding of these genes provides basic biological insights as well as a starting point for developing novel methods of crop protection against pathogens. This volume deals with defense-related genes of plants and their regulation as well as with the genes of microbes involved in their interaction with plants. Our discussion begins at the level of populations and addresses the complex interaction of plant and microbial genes in multigenic disease resistance and its significance for crop protection as compared to mono genic resistance (Chap. 1). Although monogenic disease resistance may have its problems in the practice of crop protection, it is appealing to the experimentalist: in the so-called gene-for-gene systems, single genes in the plant and in the pathogen specify the compatibility or incompatibility of an interaction providing an ideal experimental system for studying events at the molecular level (Chaps. 2 and 4). Good progress has been made in identifying viral, bacterial, and fungal genes important in virulence and host range (Chaps. 3-6). An important aspect of plant-microbe interactions is the exchange of chemical signals. Microbes can respond to chemical signals of plant origin.
Publisher: Springer Science & Business Media
ISBN: 3709166845
Category : Science
Languages : en
Pages : 368
Book Description
Many fungi and bacteria that associate with plants are potentially harmful and can cause disease, while others enter into mutually beneficial sym bioses. Co-evolution of plants with pathogenic and symbiotic microbes has lead to refined mechanisms of reciprocal recognition, defense and counter defense. Genes in both partners determine and regulate these mechanisms. A detailed understanding of these genes provides basic biological insights as well as a starting point for developing novel methods of crop protection against pathogens. This volume deals with defense-related genes of plants and their regulation as well as with the genes of microbes involved in their interaction with plants. Our discussion begins at the level of populations and addresses the complex interaction of plant and microbial genes in multigenic disease resistance and its significance for crop protection as compared to mono genic resistance (Chap. 1). Although monogenic disease resistance may have its problems in the practice of crop protection, it is appealing to the experimentalist: in the so-called gene-for-gene systems, single genes in the plant and in the pathogen specify the compatibility or incompatibility of an interaction providing an ideal experimental system for studying events at the molecular level (Chaps. 2 and 4). Good progress has been made in identifying viral, bacterial, and fungal genes important in virulence and host range (Chaps. 3-6). An important aspect of plant-microbe interactions is the exchange of chemical signals. Microbes can respond to chemical signals of plant origin.
Biotrophic Plant-Microbe Interactions
Author: Pietro D. Spanu
Publisher: Frontiers Media SA
ISBN: 2889451380
Category :
Languages : en
Pages : 433
Book Description
Throughout their life, plants interact with all sorts of microbes. Some of these are detrimental and cause disease; some interactions are mutually beneficial for both partners. It is clear that most, if not all, of the interactions are regulated by highly complex checks and balances sustained by signalling and exchange of messengers and nutrients. The interactions where both partners are alive for a significant part of their time together are called biotrophic. In this e-book we bring together 33 articles representing the current state-of-the-art in research about diverse biotrophic plant-microbe associations aimed at describing and understanding how these complex and ubiquitous partnerships work and ultimately support much of the land-based biosphere.
Publisher: Frontiers Media SA
ISBN: 2889451380
Category :
Languages : en
Pages : 433
Book Description
Throughout their life, plants interact with all sorts of microbes. Some of these are detrimental and cause disease; some interactions are mutually beneficial for both partners. It is clear that most, if not all, of the interactions are regulated by highly complex checks and balances sustained by signalling and exchange of messengers and nutrients. The interactions where both partners are alive for a significant part of their time together are called biotrophic. In this e-book we bring together 33 articles representing the current state-of-the-art in research about diverse biotrophic plant-microbe associations aimed at describing and understanding how these complex and ubiquitous partnerships work and ultimately support much of the land-based biosphere.
Plant Pathology
Author: Christian Joseph Cumagun
Publisher: BoD – Books on Demand
ISBN: 9535104896
Category : Medical
Languages : en
Pages : 378
Book Description
Plant pathology is an applied science that deals with the nature, causes and control of plant diseases in agriculture and forestry. The vital role of plant pathology in attaining food security and food safety for the world cannot be overemphasized.
Publisher: BoD – Books on Demand
ISBN: 9535104896
Category : Medical
Languages : en
Pages : 378
Book Description
Plant pathology is an applied science that deals with the nature, causes and control of plant diseases in agriculture and forestry. The vital role of plant pathology in attaining food security and food safety for the world cannot be overemphasized.
Plant-Microbe Interactions in the Rhizosphere
Author: Adam Schikora
Publisher:
ISBN: 9781912530007
Category : Science
Languages : en
Pages : 114
Book Description
In this volume expert authors review current research on diverse aspects of the interactions which occur in the rhizosphere between the host plant and the microorganisms. The chapters focus on specific phenomena, from the biochemical and genetical level to complex inter-organism communication.
Publisher:
ISBN: 9781912530007
Category : Science
Languages : en
Pages : 114
Book Description
In this volume expert authors review current research on diverse aspects of the interactions which occur in the rhizosphere between the host plant and the microorganisms. The chapters focus on specific phenomena, from the biochemical and genetical level to complex inter-organism communication.
Molecular Genetics of Plant-Microbe Interactions
Author: Desh Pal S. Verma
Publisher: Springer Science & Business Media
ISBN: 9400944829
Category : Science
Languages : en
Pages : 362
Book Description
Increased interest in the basic biology of plants and microorganisms stems from the fact that crop productivity is directly affected by plant-microbe interactions. In spite of the fact that plants exist in the environment amongst diverse species of microorganisms, only a few ever establish a direct relationship. Emerging awareness concerning the indirect effect of microbial association on plant growth and the possibility of using one microbe against another for controlling pathogenic interactions is at the genesis of new fields of studies. The primary reason for a microbe to associate with· photoautotrophic organisms (plants) is to tap its nutritional requirements, fixed carbon, as a source of energy. By hook or by crook, a microbe must survive. Some have evolved mechanisms to exploit plants to develop a niche for their biotropic demands. When in contact with a living plant, microorganisms may live in a passive association using exudates from the plant, invade it pathogenically or coexist with it in symbiosis. The plant responds to the interloper, either reacting in a hypersensitive manner to contain the invasion of pathogens, or by inducing a set of genes that leads toward symbiosis, or by simply succumbing to the invader. Thus, prior to contact wi th the plant, mic roorganism is able to sense the presence of the host and activate accordingly a set of genes required for the forthcoming interaction, whether symbiotic or pathogenic.
Publisher: Springer Science & Business Media
ISBN: 9400944829
Category : Science
Languages : en
Pages : 362
Book Description
Increased interest in the basic biology of plants and microorganisms stems from the fact that crop productivity is directly affected by plant-microbe interactions. In spite of the fact that plants exist in the environment amongst diverse species of microorganisms, only a few ever establish a direct relationship. Emerging awareness concerning the indirect effect of microbial association on plant growth and the possibility of using one microbe against another for controlling pathogenic interactions is at the genesis of new fields of studies. The primary reason for a microbe to associate with· photoautotrophic organisms (plants) is to tap its nutritional requirements, fixed carbon, as a source of energy. By hook or by crook, a microbe must survive. Some have evolved mechanisms to exploit plants to develop a niche for their biotropic demands. When in contact with a living plant, microorganisms may live in a passive association using exudates from the plant, invade it pathogenically or coexist with it in symbiosis. The plant responds to the interloper, either reacting in a hypersensitive manner to contain the invasion of pathogens, or by inducing a set of genes that leads toward symbiosis, or by simply succumbing to the invader. Thus, prior to contact wi th the plant, mic roorganism is able to sense the presence of the host and activate accordingly a set of genes required for the forthcoming interaction, whether symbiotic or pathogenic.