Author: Roberto Todeschini
Publisher: John Wiley & Sons
ISBN: 9783527628773
Category : Science
Languages : en
Pages : 1257
Book Description
The number-one reference on the topic now contains a wealth of new data: The entire relevant literature over the past six years has been painstakingly surveyed, resulting in hundreds of new descriptors being added to the list, and some 3,000 new references in the bibliography section. Volume 1 contains an alphabetical listing of more than 3300 descriptors and related terms for chemoinformatic analysis of chemical compound properties, while the second volume lists over 6,000 references selected from 450 journals. To make the data even more accessible, the introductory section has been completely re-written and now contains several "walk-through" reading lists of selected keywords for novice users.
Molecular Descriptors for Chemoinformatics
Author: Roberto Todeschini
Publisher: John Wiley & Sons
ISBN: 9783527628773
Category : Science
Languages : en
Pages : 1257
Book Description
The number-one reference on the topic now contains a wealth of new data: The entire relevant literature over the past six years has been painstakingly surveyed, resulting in hundreds of new descriptors being added to the list, and some 3,000 new references in the bibliography section. Volume 1 contains an alphabetical listing of more than 3300 descriptors and related terms for chemoinformatic analysis of chemical compound properties, while the second volume lists over 6,000 references selected from 450 journals. To make the data even more accessible, the introductory section has been completely re-written and now contains several "walk-through" reading lists of selected keywords for novice users.
Publisher: John Wiley & Sons
ISBN: 9783527628773
Category : Science
Languages : en
Pages : 1257
Book Description
The number-one reference on the topic now contains a wealth of new data: The entire relevant literature over the past six years has been painstakingly surveyed, resulting in hundreds of new descriptors being added to the list, and some 3,000 new references in the bibliography section. Volume 1 contains an alphabetical listing of more than 3300 descriptors and related terms for chemoinformatic analysis of chemical compound properties, while the second volume lists over 6,000 references selected from 450 journals. To make the data even more accessible, the introductory section has been completely re-written and now contains several "walk-through" reading lists of selected keywords for novice users.
Handbook of Molecular Descriptors
Author: Roberto Todeschini
Publisher: John Wiley & Sons
ISBN: 3527613110
Category : Science
Languages : en
Pages : 688
Book Description
Quantitative studies on structure-activity and structure-property relationships are powerful tools in directed drug research. In recent years, various strategies have been developed to characterize and classify structural patterns by means of molecular descriptors. It has become possible not only to assess diversities or similarities of structure databases, but molecular descriptors also facilitate the identification of potential bioactive molecules from the rapidly increasing number of compound libraries. They even allow for a controlled de-novo design of new lead structures. This is the most comprehensive collection of molecular descriptors and presents a detailed review from the origins of this research field up to present day. This practically oriented reference book gives a thorough overview of the different molecular descriptors representations and their corresponding molecular descriptors. All descriptors are listed with their definition, symbols and labels, formulas, some numerical examples, data and molecular graphs, while numerous figures and tables aid comprehension of the definitions. Cross-references throughout, a list of acronyms and notations allow easy access to the information needed to solve a specific research problem. Examples of descriptor calculations along with tables of descriptor values for a set of selected reference compounds and an up-to-date reference list add to the practical value of the book, making it an invaluable guide for all those dealing with bioactive molecules as well as for researchers.
Publisher: John Wiley & Sons
ISBN: 3527613110
Category : Science
Languages : en
Pages : 688
Book Description
Quantitative studies on structure-activity and structure-property relationships are powerful tools in directed drug research. In recent years, various strategies have been developed to characterize and classify structural patterns by means of molecular descriptors. It has become possible not only to assess diversities or similarities of structure databases, but molecular descriptors also facilitate the identification of potential bioactive molecules from the rapidly increasing number of compound libraries. They even allow for a controlled de-novo design of new lead structures. This is the most comprehensive collection of molecular descriptors and presents a detailed review from the origins of this research field up to present day. This practically oriented reference book gives a thorough overview of the different molecular descriptors representations and their corresponding molecular descriptors. All descriptors are listed with their definition, symbols and labels, formulas, some numerical examples, data and molecular graphs, while numerous figures and tables aid comprehension of the definitions. Cross-references throughout, a list of acronyms and notations allow easy access to the information needed to solve a specific research problem. Examples of descriptor calculations along with tables of descriptor values for a set of selected reference compounds and an up-to-date reference list add to the practical value of the book, making it an invaluable guide for all those dealing with bioactive molecules as well as for researchers.
An Introduction to Chemoinformatics
Author: Andrew R. Leach
Publisher: Springer
ISBN: 1402062915
Category : Science
Languages : en
Pages : 260
Book Description
This book aims to provide an introduction to the major techniques of chemoinformatics. It is the first text written specifically for this field. The first part of the book deals with the representation of 2D and 3D molecular structures, the calculation of molecular descriptors and the construction of mathematical models. The second part describes other important topics including molecular similarity and diversity, the analysis of large data sets, virtual screening, and library design. Simple illustrative examples are used throughout to illustrate key concepts, supplemented with case studies from the literature.
Publisher: Springer
ISBN: 1402062915
Category : Science
Languages : en
Pages : 260
Book Description
This book aims to provide an introduction to the major techniques of chemoinformatics. It is the first text written specifically for this field. The first part of the book deals with the representation of 2D and 3D molecular structures, the calculation of molecular descriptors and the construction of mathematical models. The second part describes other important topics including molecular similarity and diversity, the analysis of large data sets, virtual screening, and library design. Simple illustrative examples are used throughout to illustrate key concepts, supplemented with case studies from the literature.
Chemoinformatics
Author: Jürgen Bajorath
Publisher: Springer Science & Business Media
ISBN: 1592598021
Category : Medical
Languages : en
Pages : 530
Book Description
In the literature, several terms are used synonymously to name the topic of this book: chem-, chemi-, or chemo-informatics. A widely recognized de- nition of this discipline is the one by Frank Brown from 1998 (1) who defined chemoinformatics as the combination of “all the information resources that a scientist needs to optimize the properties of a ligand to become a drug. ” In Brown’s definition, two aspects play a fundamentally important role: de- sion support by computational means and drug discovery, which distinguishes it from the term “chemical informatics” that was introduced at least ten years earlier and described as the application of information technology to ch- istry (not with a specific focus on drug discovery). In addition, there is of course “chemometrics,” which is generally understood as the application of statistical methods to chemical data and the derivation of relevant statistical models and descriptors (2). The pharmaceutical focus of many developments and efforts in this area—and the current popularity of gene-to-drug or si- lar paradigms—is further reflected by the recent introduction of such terms as “discovery informatics” (3), which takes into account that gaining kno- edge from chemical data alone is not sufficient to be ultimately successful in drug discovery. Such insights are well in accord with other views that the boundaries between bio- and chemoinformatics are fluid and that these d- ciplines should be closely combined or merged to significantly impact b- technology or pharmaceutical research (4).
Publisher: Springer Science & Business Media
ISBN: 1592598021
Category : Medical
Languages : en
Pages : 530
Book Description
In the literature, several terms are used synonymously to name the topic of this book: chem-, chemi-, or chemo-informatics. A widely recognized de- nition of this discipline is the one by Frank Brown from 1998 (1) who defined chemoinformatics as the combination of “all the information resources that a scientist needs to optimize the properties of a ligand to become a drug. ” In Brown’s definition, two aspects play a fundamentally important role: de- sion support by computational means and drug discovery, which distinguishes it from the term “chemical informatics” that was introduced at least ten years earlier and described as the application of information technology to ch- istry (not with a specific focus on drug discovery). In addition, there is of course “chemometrics,” which is generally understood as the application of statistical methods to chemical data and the derivation of relevant statistical models and descriptors (2). The pharmaceutical focus of many developments and efforts in this area—and the current popularity of gene-to-drug or si- lar paradigms—is further reflected by the recent introduction of such terms as “discovery informatics” (3), which takes into account that gaining kno- edge from chemical data alone is not sufficient to be ultimately successful in drug discovery. Such insights are well in accord with other views that the boundaries between bio- and chemoinformatics are fluid and that these d- ciplines should be closely combined or merged to significantly impact b- technology or pharmaceutical research (4).
Tutorials in Chemoinformatics
Author: Alexandre Varnek
Publisher: John Wiley & Sons
ISBN: 1119137969
Category : Science
Languages : en
Pages : 501
Book Description
30 tutorials and more than 100 exercises in chemoinformatics, supported by online software and data sets Chemoinformatics is widely used in both academic and industrial chemical and biochemical research worldwide. Yet, until this unique guide, there were no books offering practical exercises in chemoinformatics methods. Tutorials in Chemoinformatics contains more than 100 exercises in 30 tutorials exploring key topics and methods in the field. It takes an applied approach to the subject with a strong emphasis on problem-solving and computational methodologies. Each tutorial is self-contained and contains exercises for students to work through using a variety of software packages. The majority of the tutorials are divided into three sections devoted to theoretical background, algorithm description and software applications, respectively, with the latter section providing step-by-step software instructions. Throughout, three types of software tools are used: in-house programs developed by the authors, open-source programs and commercial programs which are available for free or at a modest cost to academics. The in-house software and data sets are available on a dedicated companion website. Key topics and methods covered in Tutorials in Chemoinformatics include: Data curation and standardization Development and use of chemical databases Structure encoding by molecular descriptors, text strings and binary fingerprints The design of diverse and focused libraries Chemical data analysis and visualization Structure-property/activity modeling (QSAR/QSPR) Ensemble modeling approaches, including bagging, boosting, stacking and random subspaces 3D pharmacophores modeling and pharmacological profiling using shape analysis Protein-ligand docking Implementation of algorithms in a high-level programming language Tutorials in Chemoinformatics is an ideal supplementary text for advanced undergraduate and graduate courses in chemoinformatics, bioinformatics, computational chemistry, computational biology, medicinal chemistry and biochemistry. It is also a valuable working resource for medicinal chemists, academic researchers and industrial chemists looking to enhance their chemoinformatics skills.
Publisher: John Wiley & Sons
ISBN: 1119137969
Category : Science
Languages : en
Pages : 501
Book Description
30 tutorials and more than 100 exercises in chemoinformatics, supported by online software and data sets Chemoinformatics is widely used in both academic and industrial chemical and biochemical research worldwide. Yet, until this unique guide, there were no books offering practical exercises in chemoinformatics methods. Tutorials in Chemoinformatics contains more than 100 exercises in 30 tutorials exploring key topics and methods in the field. It takes an applied approach to the subject with a strong emphasis on problem-solving and computational methodologies. Each tutorial is self-contained and contains exercises for students to work through using a variety of software packages. The majority of the tutorials are divided into three sections devoted to theoretical background, algorithm description and software applications, respectively, with the latter section providing step-by-step software instructions. Throughout, three types of software tools are used: in-house programs developed by the authors, open-source programs and commercial programs which are available for free or at a modest cost to academics. The in-house software and data sets are available on a dedicated companion website. Key topics and methods covered in Tutorials in Chemoinformatics include: Data curation and standardization Development and use of chemical databases Structure encoding by molecular descriptors, text strings and binary fingerprints The design of diverse and focused libraries Chemical data analysis and visualization Structure-property/activity modeling (QSAR/QSPR) Ensemble modeling approaches, including bagging, boosting, stacking and random subspaces 3D pharmacophores modeling and pharmacological profiling using shape analysis Protein-ligand docking Implementation of algorithms in a high-level programming language Tutorials in Chemoinformatics is an ideal supplementary text for advanced undergraduate and graduate courses in chemoinformatics, bioinformatics, computational chemistry, computational biology, medicinal chemistry and biochemistry. It is also a valuable working resource for medicinal chemists, academic researchers and industrial chemists looking to enhance their chemoinformatics skills.
Handbook of Chemoinformatics Algorithms
Author: Jean-Loup Faulon
Publisher: CRC Press
ISBN: 142008299X
Category : Computers
Languages : en
Pages : 454
Book Description
Unlike in the related area of bioinformatics, few books currently exist that document the techniques, tools, and algorithms of chemoinformatics. Bringing together worldwide experts in the field, the Handbook of Chemoinformatics Algorithms provides an overview of the most common chemoinformatics algorithms in a single source.After a historical persp
Publisher: CRC Press
ISBN: 142008299X
Category : Computers
Languages : en
Pages : 454
Book Description
Unlike in the related area of bioinformatics, few books currently exist that document the techniques, tools, and algorithms of chemoinformatics. Bringing together worldwide experts in the field, the Handbook of Chemoinformatics Algorithms provides an overview of the most common chemoinformatics algorithms in a single source.After a historical persp
Chemoinformatics
Author: Thomas Engel
Publisher: John Wiley & Sons
ISBN: 3527331093
Category : Science
Languages : en
Pages : 611
Book Description
Von den Grundlagen zu Methoden - dieses Fachbuch, übersichtlich und didaktisch klar gegliedert, ist eine maßgebliche Handreichung mit allem Wissenswerten und Erläuterungen der Tools in diesem Fachgebiet.
Publisher: John Wiley & Sons
ISBN: 3527331093
Category : Science
Languages : en
Pages : 611
Book Description
Von den Grundlagen zu Methoden - dieses Fachbuch, übersichtlich und didaktisch klar gegliedert, ist eine maßgebliche Handreichung mit allem Wissenswerten und Erläuterungen der Tools in diesem Fachgebiet.
Chemoinformatics Approaches to Virtual Screening
Author: Alexandre Varnek
Publisher: Royal Society of Chemistry
ISBN: 0854041443
Category : Computers
Languages : en
Pages : 356
Book Description
Chemoinformatics is broadly a scientific discipline encompassing the design, creation, organization, management, retrieval, analysis, dissemination, visualization and use of chemical information. It is distinct from other computational molecular modeling approaches in that it uses unique representations of chemical structures in the form of multiple chemical descriptors; has its own metrics for defining similarity and diversity of chemical compound libraries; and applies a wide array of statistical, data mining and machine learning techniques to very large collections of chemical compounds in order to establish robust relationships between chemical structure and its physical or biological properties. Chemoinformatics addresses a broad range of problems in chemistry and biology; however, the most commonly known applications of chemoinformatics approaches have been arguably in the area of drug discovery where chemoinformatics tools have played a central role in the analysis and interpretation of structure-property data collected by the means of modern high throughput screening. Early stages in modern drug discovery often involved screening small molecules for their effects on a selected protein target or a model of a biological pathway. In the past fifteen years, innovative technologies that enable rapid synthesis and high throughput screening of large libraries of compounds have been adopted in almost all major pharmaceutical and biotech companies. As a result, there has been a huge increase in the number of compounds available on a routine basis to quickly screen for novel drug candidates against new targets/pathways. In contrast, such technologies have rarely become available to the academic research community, thus limiting its ability to conduct large scale chemical genetics or chemical genomics research. However, the landscape of publicly available experimental data collection methods for chemoinformatics has changed dramatically in very recent years. The term "virtual screening" is commonly associated with methodologies that rely on the explicit knowledge of three-dimensional structure of the target protein to identify potential bioactive compounds. Traditional docking protocols and scoring functions rely on explicitly defined three dimensional coordinates and standard definitions of atom types of both receptors and ligands. Albeit reasonably accurate in many cases, conventional structure based virtual screening approaches are relatively computationally inefficient, which has precluded them from screening really large compound collections. Significant progress has been achieved over many years of research in developing many structure based virtual screening approaches. This book is the first monograph that summarizes innovative applications of efficient chemoinformatics approaches towards the goal of screening large chemical libraries. The focus on virtual screening expands chemoinformatics beyond its traditional boundaries as a synthetic and data-analytical area of research towards its recognition as a predictive and decision support scientific discipline. The approaches discussed by the contributors to the monograph rely on chemoinformatics concepts such as: -representation of molecules using multiple descriptors of chemical structures -advanced chemical similarity calculations in multidimensional descriptor spaces -the use of advanced machine learning and data mining approaches for building quantitative and predictive structure activity models -the use of chemoinformatics methodologies for the analysis of drug-likeness and property prediction -the emerging trend on combining chemoinformatics and bioinformatics concepts in structure based drug discovery The chapters of the book are organized in a logical flow that a typical chemoinformatics project would follow - from structure representation and comparison to data analysis and model building to applications of structure-property relationship models for hit identification and chemical library design. It opens with the overview of modern methods of compounds library design, followed by a chapter devoted to molecular similarity analysis. Four sections describe virtual screening based on the using of molecular fragments, 2D pharmacophores and 3D pharmacophores. Application of fuzzy pharmacophores for libraries design is the subject of the next chapter followed by a chapter dealing with QSAR studies based on local molecular parameters. Probabilistic approaches based on 2D descriptors in assessment of biological activities are also described with an overview of the modern methods and software for ADME prediction. The book ends with a chapter describing the new approach of coding the receptor binding sites and their respective ligands in multidimensional chemical descriptor space that affords an interesting and efficient alternative to traditional docking and screening techniques. Ligand-based approaches, which are in the focus of this work, are more computationally efficient compared to structure-based virtual screening and there are very few books related to modern developments in this field. The focus on extending the experiences accumulated in traditional areas of chemoinformatics research such as Quantitative Structure Activity Relationships (QSAR) or chemical similarity searching towards virtual screening make the theme of this monograph essential reading for researchers in the area of computer-aided drug discovery. However, due to its generic data-analytical focus there will be a growing application of chemoinformatics approaches in multiple areas of chemical and biological research such as synthesis planning, nanotechnology, proteomics, physical and analytical chemistry and chemical genomics.
Publisher: Royal Society of Chemistry
ISBN: 0854041443
Category : Computers
Languages : en
Pages : 356
Book Description
Chemoinformatics is broadly a scientific discipline encompassing the design, creation, organization, management, retrieval, analysis, dissemination, visualization and use of chemical information. It is distinct from other computational molecular modeling approaches in that it uses unique representations of chemical structures in the form of multiple chemical descriptors; has its own metrics for defining similarity and diversity of chemical compound libraries; and applies a wide array of statistical, data mining and machine learning techniques to very large collections of chemical compounds in order to establish robust relationships between chemical structure and its physical or biological properties. Chemoinformatics addresses a broad range of problems in chemistry and biology; however, the most commonly known applications of chemoinformatics approaches have been arguably in the area of drug discovery where chemoinformatics tools have played a central role in the analysis and interpretation of structure-property data collected by the means of modern high throughput screening. Early stages in modern drug discovery often involved screening small molecules for their effects on a selected protein target or a model of a biological pathway. In the past fifteen years, innovative technologies that enable rapid synthesis and high throughput screening of large libraries of compounds have been adopted in almost all major pharmaceutical and biotech companies. As a result, there has been a huge increase in the number of compounds available on a routine basis to quickly screen for novel drug candidates against new targets/pathways. In contrast, such technologies have rarely become available to the academic research community, thus limiting its ability to conduct large scale chemical genetics or chemical genomics research. However, the landscape of publicly available experimental data collection methods for chemoinformatics has changed dramatically in very recent years. The term "virtual screening" is commonly associated with methodologies that rely on the explicit knowledge of three-dimensional structure of the target protein to identify potential bioactive compounds. Traditional docking protocols and scoring functions rely on explicitly defined three dimensional coordinates and standard definitions of atom types of both receptors and ligands. Albeit reasonably accurate in many cases, conventional structure based virtual screening approaches are relatively computationally inefficient, which has precluded them from screening really large compound collections. Significant progress has been achieved over many years of research in developing many structure based virtual screening approaches. This book is the first monograph that summarizes innovative applications of efficient chemoinformatics approaches towards the goal of screening large chemical libraries. The focus on virtual screening expands chemoinformatics beyond its traditional boundaries as a synthetic and data-analytical area of research towards its recognition as a predictive and decision support scientific discipline. The approaches discussed by the contributors to the monograph rely on chemoinformatics concepts such as: -representation of molecules using multiple descriptors of chemical structures -advanced chemical similarity calculations in multidimensional descriptor spaces -the use of advanced machine learning and data mining approaches for building quantitative and predictive structure activity models -the use of chemoinformatics methodologies for the analysis of drug-likeness and property prediction -the emerging trend on combining chemoinformatics and bioinformatics concepts in structure based drug discovery The chapters of the book are organized in a logical flow that a typical chemoinformatics project would follow - from structure representation and comparison to data analysis and model building to applications of structure-property relationship models for hit identification and chemical library design. It opens with the overview of modern methods of compounds library design, followed by a chapter devoted to molecular similarity analysis. Four sections describe virtual screening based on the using of molecular fragments, 2D pharmacophores and 3D pharmacophores. Application of fuzzy pharmacophores for libraries design is the subject of the next chapter followed by a chapter dealing with QSAR studies based on local molecular parameters. Probabilistic approaches based on 2D descriptors in assessment of biological activities are also described with an overview of the modern methods and software for ADME prediction. The book ends with a chapter describing the new approach of coding the receptor binding sites and their respective ligands in multidimensional chemical descriptor space that affords an interesting and efficient alternative to traditional docking and screening techniques. Ligand-based approaches, which are in the focus of this work, are more computationally efficient compared to structure-based virtual screening and there are very few books related to modern developments in this field. The focus on extending the experiences accumulated in traditional areas of chemoinformatics research such as Quantitative Structure Activity Relationships (QSAR) or chemical similarity searching towards virtual screening make the theme of this monograph essential reading for researchers in the area of computer-aided drug discovery. However, due to its generic data-analytical focus there will be a growing application of chemoinformatics approaches in multiple areas of chemical and biological research such as synthesis planning, nanotechnology, proteomics, physical and analytical chemistry and chemical genomics.
Statistical Modelling of Molecular Descriptors in QSAR/QSPR
Author: Matthias Dehmer
Publisher: John Wiley & Sons
ISBN: 3527645012
Category : Medical
Languages : en
Pages : 437
Book Description
This handbook and ready reference presents a combination of statistical, information-theoretic, and data analysis methods to meet the challenge of designing empirical models involving molecular descriptors within bioinformatics. The topics range from investigating information processing in chemical and biological networks to studying statistical and information-theoretic techniques for analyzing chemical structures to employing data analysis and machine learning techniques for QSAR/QSPR. The high-profile international author and editor team ensures excellent coverage of the topic, making this a must-have for everyone working in chemoinformatics and structure-oriented drug design.
Publisher: John Wiley & Sons
ISBN: 3527645012
Category : Medical
Languages : en
Pages : 437
Book Description
This handbook and ready reference presents a combination of statistical, information-theoretic, and data analysis methods to meet the challenge of designing empirical models involving molecular descriptors within bioinformatics. The topics range from investigating information processing in chemical and biological networks to studying statistical and information-theoretic techniques for analyzing chemical structures to employing data analysis and machine learning techniques for QSAR/QSPR. The high-profile international author and editor team ensures excellent coverage of the topic, making this a must-have for everyone working in chemoinformatics and structure-oriented drug design.
Handbook of Chemoinformatics
Author: Johann Gasteiger
Publisher:
ISBN: 9783527306800
Category : Cheminformatics
Languages : en
Pages : 1870
Book Description
"The new discipline of chemoinformatics covers the application of computer-assisted methods to chemical problems such as information storage and retrieval, the prediction of physical, chemical or biological properties of compounds, spectra simulation, structure elucidation, reaction modeling, synthesis planning and drug design. ... this four-volume Handbook contains in-depth contributions from top authors from around the world, with the content organized into chapters dealing with the representation of molecular structures and reactions, data types and databases/data sources, search methods, methods for data analysis as well as applications"--Back cover.
Publisher:
ISBN: 9783527306800
Category : Cheminformatics
Languages : en
Pages : 1870
Book Description
"The new discipline of chemoinformatics covers the application of computer-assisted methods to chemical problems such as information storage and retrieval, the prediction of physical, chemical or biological properties of compounds, spectra simulation, structure elucidation, reaction modeling, synthesis planning and drug design. ... this four-volume Handbook contains in-depth contributions from top authors from around the world, with the content organized into chapters dealing with the representation of molecular structures and reactions, data types and databases/data sources, search methods, methods for data analysis as well as applications"--Back cover.