Some Applications of Modular Forms

Some Applications of Modular Forms PDF Author: Peter Sarnak
Publisher: Cambridge University Press
ISBN: 1316582442
Category : Mathematics
Languages : en
Pages : 124

Get Book Here

Book Description
The theory of modular forms and especially the so-called 'Ramanujan Conjectures' have been applied to resolve problems in combinatorics, computer science, analysis and number theory. This tract, based on the Wittemore Lectures given at Yale University, is concerned with describing some of these applications. In order to keep the presentation reasonably self-contained, Professor Sarnak begins by developing the necessary background material in modular forms. He then considers the solution of three problems: the Ruziewicz problem concerning finitely additive rotationally invariant measures on the sphere; the explicit construction of highly connected but sparse graphs: 'expander graphs' and 'Ramanujan graphs'; and the Linnik problem concerning the distribution of integers that represent a given large integer as a sum of three squares. These applications are carried out in detail. The book therefore should be accessible to a wide audience of graduate students and researchers in mathematics and computer science.

Some Applications of Modular Forms

Some Applications of Modular Forms PDF Author: Peter Sarnak
Publisher: Cambridge University Press
ISBN: 1316582442
Category : Mathematics
Languages : en
Pages : 124

Get Book Here

Book Description
The theory of modular forms and especially the so-called 'Ramanujan Conjectures' have been applied to resolve problems in combinatorics, computer science, analysis and number theory. This tract, based on the Wittemore Lectures given at Yale University, is concerned with describing some of these applications. In order to keep the presentation reasonably self-contained, Professor Sarnak begins by developing the necessary background material in modular forms. He then considers the solution of three problems: the Ruziewicz problem concerning finitely additive rotationally invariant measures on the sphere; the explicit construction of highly connected but sparse graphs: 'expander graphs' and 'Ramanujan graphs'; and the Linnik problem concerning the distribution of integers that represent a given large integer as a sum of three squares. These applications are carried out in detail. The book therefore should be accessible to a wide audience of graduate students and researchers in mathematics and computer science.

Modular Forms and the Ramanujan Conjecture

Modular Forms and the Ramanujan Conjecture PDF Author: Brian Conrad
Publisher:
ISBN: 9780521831000
Category : Mathematics
Languages : en
Pages : 480

Get Book Here

Book Description
The connection between Galois representations and modular forms has been a dominant theme in number theory in recent decades. It lies at the foundation of Deligne's proof of the classical Ramanujan Conjecture, Wiles' proof of Fermat's Last Theorem, fundamental discoveries by a number of mathematicians working on the Langlands program, and much more. In this advanced graduate textbook, a self-contained development is provided for the construction of Galois representations attached to classical modular forms, and a distinguishing feature is a careful and extensive development of the algebro-geometric machinery and techniques that one needs in this construction and its generalizations beyond the classical case. Related topics such as complex analytic spaces, Hodge structures, and etale cohomology are explained in detail and are presented in a level of generality that is suitable for considerations beyond the immediate applications to problems concerning classical modular forms. The main prerequisite is a familiarity with classical modular forms and the methods of modern algebraic geometry. Graduate students with interests in algebraic geometry, number theory, and automorphic forms will find this book to be suitable for self-study or for mini-seminars, and researchers in number theory will find it to be a useful reference.

The 1-2-3 of Modular Forms

The 1-2-3 of Modular Forms PDF Author: Jan Hendrik Bruinier
Publisher: Springer Science & Business Media
ISBN: 3540741194
Category : Mathematics
Languages : en
Pages : 273

Get Book Here

Book Description
This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.

Number Theory

Number Theory PDF Author: Kazuya Kato
Publisher: American Mathematical Soc.
ISBN: 0821820958
Category : Class field theory
Languages : en
Pages : 243

Get Book Here

Book Description


Modular Forms, a Computational Approach

Modular Forms, a Computational Approach PDF Author: William A. Stein
Publisher: American Mathematical Soc.
ISBN: 0821839608
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
This marvellous and highly original book fills a significant gap in the extensive literature on classical modular forms. This is not just yet another introductory text to this theory, though it could certainly be used as such in conjunction with more traditional treatments. Its novelty lies in its computational emphasis throughout: Stein not only defines what modular forms are, but shows in illuminating detail how one can compute everything about them in practice. This is illustrated throughout the book with examples from his own (entirely free) software package SAGE, which really bring the subject to life while not detracting in any way from its theoretical beauty. The author is the leading expert in computations with modular forms, and what he says on this subject is all tried and tested and based on his extensive experience. As well as being an invaluable companion to those learning the theory in a more traditional way, this book will be a great help to those who wish to use modular forms in applications, such as in the explicit solution of Diophantine equations. There is also a useful Appendix by Gunnells on extensions to more general modular forms, which has enough in it to inspire many PhD theses for years to come. While the book's main readership will be graduate students in number theory, it will also be accessible to advanced undergraduates and useful to both specialists and non-specialists in number theory. --John E. Cremona, University of Nottingham William Stein is an associate professor of mathematics at the University of Washington at Seattle. He earned a PhD in mathematics from UC Berkeley and has held positions at Harvard University and UC San Diego. His current research interests lie in modular forms, elliptic curves, and computational mathematics.

Modular Forms: A Classical And Computational Introduction (2nd Edition)

Modular Forms: A Classical And Computational Introduction (2nd Edition) PDF Author: Lloyd James Peter Kilford
Publisher: World Scientific Publishing Company
ISBN: 1783265477
Category : Mathematics
Languages : en
Pages : 252

Get Book Here

Book Description
Modular Forms is a graduate student-level introduction to the classical theory of modular forms and computations involving modular forms, including modular functions and the theory of Hecke operators. It also includes applications of modular forms to various subjects, such as the theory of quadratic forms, the proof of Fermat's Last Theorem and the approximation of π. The text gives a balanced overview of both the theoretical and computational sides of its subject, allowing a variety of courses to be taught from it.This second edition has been revised and updated. New material on the future of modular forms as well as a chapter about longer-form projects for students has also been added.

Noncommutative Geometry and Number Theory

Noncommutative Geometry and Number Theory PDF Author: Caterina Consani
Publisher: Springer Science & Business Media
ISBN: 3834803529
Category : Mathematics
Languages : en
Pages : 374

Get Book Here

Book Description
In recent years, number theory and arithmetic geometry have been enriched by new techniques from noncommutative geometry, operator algebras, dynamical systems, and K-Theory. This volume collects and presents up-to-date research topics in arithmetic and noncommutative geometry and ideas from physics that point to possible new connections between the fields of number theory, algebraic geometry and noncommutative geometry. The articles collected in this volume present new noncommutative geometry perspectives on classical topics of number theory and arithmetic such as modular forms, class field theory, the theory of reductive p-adic groups, Shimura varieties, the local L-factors of arithmetic varieties. They also show how arithmetic appears naturally in noncommutative geometry and in physics, in the residues of Feynman graphs, in the properties of noncommutative tori, and in the quantum Hall effect.

Harmonic Maass Forms and Mock Modular Forms: Theory and Applications

Harmonic Maass Forms and Mock Modular Forms: Theory and Applications PDF Author: Kathrin Bringmann
Publisher: American Mathematical Soc.
ISBN: 1470419440
Category : Mathematics
Languages : en
Pages : 409

Get Book Here

Book Description
Modular forms and Jacobi forms play a central role in many areas of mathematics. Over the last 10–15 years, this theory has been extended to certain non-holomorphic functions, the so-called “harmonic Maass forms”. The first glimpses of this theory appeared in Ramanujan's enigmatic last letter to G. H. Hardy written from his deathbed. Ramanujan discovered functions he called “mock theta functions” which over eighty years later were recognized as pieces of harmonic Maass forms. This book contains the essential features of the theory of harmonic Maass forms and mock modular forms, together with a wide variety of applications to algebraic number theory, combinatorics, elliptic curves, mathematical physics, quantum modular forms, and representation theory.

Differential Geometry, Lie Groups, and Symmetric Spaces

Differential Geometry, Lie Groups, and Symmetric Spaces PDF Author: Sigurdur Helgason
Publisher: American Mathematical Soc.
ISBN: 0821828487
Category : Mathematics
Languages : en
Pages : 682

Get Book Here

Book Description
A great book ... a necessary item in any mathematical library. --S. S. Chern, University of California A brilliant book: rigorous, tightly organized, and covering a vast amount of good mathematics. --Barrett O'Neill, University of California This is obviously a very valuable and well thought-out book on an important subject. --Andre Weil, Institute for Advanced Study The study of homogeneous spaces provides excellent insights into both differential geometry and Lie groups. In geometry, for instance, general theorems and properties will also hold for homogeneous spaces, and will usually be easier to understand and to prove in this setting. For Lie groups, a significant amount of analysis either begins with or reduces to analysis on homogeneous spaces, frequently on symmetric spaces. For many years and for many mathematicians, Sigurdur Helgason's classic Differential Geometry, Lie Groups, and Symmetric Spaces has been--and continues to be--the standard source for this material. Helgason begins with a concise, self-contained introduction to differential geometry. Next is a careful treatment of the foundations of the theory of Lie groups, presented in a manner that since 1962 has served as a model to a number of subsequent authors. This sets the stage for the introduction and study of symmetric spaces, which form the central part of the book. The text concludes with the classification of symmetric spaces by means of the Killing-Cartan classification of simple Lie algebras over $\mathbb{C}$ and Cartan's classification of simple Lie algebras over $\mathbb{R}$, following a method of Victor Kac. The excellent exposition is supplemented by extensive collections of useful exercises at the end of each chapter. All of the problems have either solutions or substantial hints, found at the back of the book. For this edition, the author has made corrections and added helpful notes and useful references. Sigurdur Helgason was awarded the Steele Prize for Differential Geometry, Lie Groups, and Symmetric Spaces and Groups and Geometric Analysis.

Number Theory Related to Fermat’s Last Theorem

Number Theory Related to Fermat’s Last Theorem PDF Author: Koblitz
Publisher: Springer Science & Business Media
ISBN: 1489966994
Category : Science
Languages : en
Pages : 366

Get Book Here

Book Description