Modern Methods for Robust Regression

Modern Methods for Robust Regression PDF Author: Robert Andersen
Publisher: SAGE
ISBN: 1412940729
Category : Mathematics
Languages : en
Pages : 129

Get Book Here

Book Description
Offering an in-depth treatment of robust and resistant regression, this volume takes an applied approach and offers readers empirical examples to illustrate key concepts.

Modern Methods for Robust Regression

Modern Methods for Robust Regression PDF Author: Robert Andersen
Publisher: SAGE
ISBN: 1412940729
Category : Mathematics
Languages : en
Pages : 129

Get Book Here

Book Description
Offering an in-depth treatment of robust and resistant regression, this volume takes an applied approach and offers readers empirical examples to illustrate key concepts.

Modern Methods for Robust Regression

Modern Methods for Robust Regression PDF Author: Robert Andersen
Publisher: SAGE Publications
ISBN: 1544332564
Category : Social Science
Languages : en
Pages : 129

Get Book Here

Book Description
Modern Methods for Robust Regression offers a brief but in-depth treatment of various methods for detecting and properly handling influential cases in regression analysis. This volume, geared toward both future and practicing social scientists, is unique in that it takes an applied approach and offers readers empirical examples to illustrate key concepts. It is ideal for readers who are interested in the issues related to outliers and influential cases. Key Features Defines key terms necessary to understanding the robustness of an estimator: Because they form the basis of robust regression techniques, the book also deals with various measures of location and scale. Addresses the robustness of validity and efficiency: After having described the robustness of validity for an estimator, the author discusses its efficiency. Focuses on the impact of outliers: The book compares the robustness of a wide variety of estimators that attempt to limit the influence of unusual observations. Gives an overview of some traditional techniques: Both formal statistical tests and graphical methods detect influential cases in the general linear model. Offers a Web appendix: This volume provides readers with the data and the R code for the examples used in the book. Intended Audience This is an excellent text for intermediate and advanced Quantitative Methods and Statistics courses offered at the graduate level across the social sciences.

Introduction to Robust Estimation and Hypothesis Testing

Introduction to Robust Estimation and Hypothesis Testing PDF Author: Rand R. Wilcox
Publisher: Academic Press
ISBN: 0123869838
Category : Mathematics
Languages : en
Pages : 713

Get Book Here

Book Description
"This book focuses on the practical aspects of modern and robust statistical methods. The increased accuracy and power of modern methods, versus conventional approaches to the analysis of variance (ANOVA) and regression, is remarkable. Through a combination of theoretical developments, improved and more flexible statistical methods, and the power of the computer, it is now possible to address problems with standard methods that seemed insurmountable only a few years ago"--

Modern Regression Methods

Modern Regression Methods PDF Author: Thomas P. Ryan
Publisher: John Wiley & Sons
ISBN: 0470081864
Category : Mathematics
Languages : en
Pages : 136

Get Book Here

Book Description
"Over the years, I have had the opportunity to teach several regression courses, and I cannot think of a better undergraduate text than this one." —The American Statistician "The book is well written and has many exercises. It can serve as a very good textbook for scientists and engineers, with only basic statistics as a prerequisite. I also highly recommend it to practitioners who want to solve real-life prediction problems." (Computing Reviews) Modern Regression Methods, Second Edition maintains the accessible organization, breadth of coverage, and cutting-edge appeal that earned its predecessor the title of being one of the top five books for statisticians by an Amstat News book editor in 2003. This new edition has been updated and enhanced to include all-new information on the latest advances and research in the evolving field of regression analysis. The book provides a unique treatment of fundamental regression methods, such as diagnostics, transformations, robust regression, and ridge regression. Unifying key concepts and procedures, this new edition emphasizes applications to provide a more hands-on and comprehensive understanding of regression diagnostics. New features of the Second Edition include: A revised chapter on logistic regression, including improved methods of parameter estimation A new chapter focusing on additional topics of study in regression, including quantile regression, semiparametric regression, and Poisson regression A wealth of new and updated exercises with worked solutions An extensive FTP site complete with Minitab macros, which allow the reader to compute analyses, and specialized procedures Updated references at the end of each chapter that direct the reader to the appropriate resources for further study An accessible guide to state-of-the-art regression techniques, Modern Regression Methods, Second Edition is an excellent book for courses in regression analysis at the upper-undergraduate and graduate levels. It is also a valuable reference for practicing statisticians, engineers, and physical scientists.

Modern Regression Techniques Using R

Modern Regression Techniques Using R PDF Author: Daniel B Wright
Publisher: SAGE
ISBN: 1446244105
Category : Mathematics
Languages : en
Pages : 218

Get Book Here

Book Description
Statistics is the language of modern empirical social and behavioural science and the varieties of regression form the basis of this language. Statistical and computing advances have led to new and exciting regressions that have become the necessary tools for any researcher in these fields. In a way that is refreshingly engaging and readable, Wright and London describe the most useful of these techniques and provide step-by-step instructions, using the freeware R, to analyze datasets that can be located on the books′ webpage: www.sagepub.co.uk/wrightandlondon. Techniques covered in this book include multilevel modeling, ANOVA and ANCOVA, path analysis, mediation and moderation, logistic regression (generalized linear models), generalized additive models, and robust methods. These are all tested out using a range of real research examples conducted by the authors in every chapter. Given the wide coverage of techniques, this book will be essential reading for any advanced undergraduate and graduate student (particularly in psychology) and for more experienced researchers wanting to learn how to apply some of the more recent statistical techniques to their datasets. The Authors are donating all royalties from the book to the American Partnership for Eosinophilic Disorders.

Robust Statistics

Robust Statistics PDF Author: Ricardo A. Maronna
Publisher: John Wiley & Sons
ISBN: 1119214688
Category : Mathematics
Languages : en
Pages : 466

Get Book Here

Book Description
A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.

Robust Regression and Outlier Detection

Robust Regression and Outlier Detection PDF Author: Peter J. Rousseeuw
Publisher: John Wiley & Sons
ISBN: 0471725374
Category : Mathematics
Languages : en
Pages : 329

Get Book Here

Book Description
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selectedbooks that have been made more accessible to consumers in an effortto increase global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "The writing style is clear and informal, and much of thediscussion is oriented to application. In short, the book is akeeper." –Mathematical Geology "I would highly recommend the addition of this book to thelibraries of both students and professionals. It is a usefultextbook for the graduate student, because it emphasizes both thephilosophy and practice of robustness in regression settings, andit provides excellent examples of precise, logical proofs oftheorems. . . .Even for those who are familiar with robustness, thebook will be a good reference because it consolidates the researchin high-breakdown affine equivariant estimators and includes anextensive bibliography in robust regression, outlier diagnostics,and related methods. The aim of this book, the authors tell us, is‘to make robust regression available for everyday statisticalpractice.’ Rousseeuw and Leroy have included all of thenecessary ingredients to make this happen." –Journal of the American Statistical Association

Introduction to Robust Estimation and Hypothesis Testing

Introduction to Robust Estimation and Hypothesis Testing PDF Author: Rand R. Wilcox
Publisher: Academic Press
ISBN: 0127515429
Category : Mathematics
Languages : en
Pages : 610

Get Book Here

Book Description
This revised book provides a thorough explanation of the foundation of robust methods, incorporating the latest updates on R and S-Plus, robust ANOVA (Analysis of Variance) and regression. It guides advanced students and other professionals through the basic strategies used for developing practical solutions to problems, and provides a brief background on the foundations of modern methods, placing the new methods in historical context. Author Rand Wilcox includes chapter exercises and many real-world examples that illustrate how various methods perform in different situations. Introduction to Robust Estimation and Hypothesis Testing, Second Edition, focuses on the practical applications of modern, robust methods which can greatly enhance our chances of detecting true differences among groups and true associations among variables. * Covers latest developments in robust regression * Covers latest improvements in ANOVA * Includes newest rank-based methods * Describes and illustrated easy to use software

The SAGE Handbook of Regression Analysis and Causal Inference

The SAGE Handbook of Regression Analysis and Causal Inference PDF Author: Henning Best
Publisher: SAGE
ISBN: 1473914388
Category : Social Science
Languages : en
Pages : 577

Get Book Here

Book Description
′The editors of the new SAGE Handbook of Regression Analysis and Causal Inference have assembled a wide-ranging, high-quality, and timely collection of articles on topics of central importance to quantitative social research, many written by leaders in the field. Everyone engaged in statistical analysis of social-science data will find something of interest in this book.′ - John Fox, Professor, Department of Sociology, McMaster University ′The authors do a great job in explaining the various statistical methods in a clear and simple way - focussing on fundamental understanding, interpretation of results, and practical application - yet being precise in their exposition.′ - Ben Jann, Executive Director, Institute of Sociology, University of Bern ′Best and Wolf have put together a powerful collection, especially valuable in its separate discussions of uses for both cross-sectional and panel data analysis.′ -Tom Smith, Senior Fellow, NORC, University of Chicago Edited and written by a team of leading international social scientists, this Handbook provides a comprehensive introduction to multivariate methods. The Handbook focuses on regression analysis of cross-sectional and longitudinal data with an emphasis on causal analysis, thereby covering a large number of different techniques including selection models, complex samples, and regression discontinuities. Each Part starts with a non-mathematical introduction to the method covered in that section, giving readers a basic knowledge of the method’s logic, scope and unique features. Next, the mathematical and statistical basis of each method is presented along with advanced aspects. Using real-world data from the European Social Survey (ESS) and the Socio-Economic Panel (GSOEP), the book provides a comprehensive discussion of each method’s application, making this an ideal text for PhD students and researchers embarking on their own data analysis.

Applying Contemporary Statistical Techniques

Applying Contemporary Statistical Techniques PDF Author: Rand R. Wilcox
Publisher: Gulf Professional Publishing
ISBN: 9780127515410
Category : Mathematics
Languages : en
Pages : 688

Get Book Here

Book Description
Applying Contemporary Statistical Techniques explains why traditional statistical methods are often inadequate or outdated when applied to modern problems. Wilcox demonstrates how new and more powerful techniques address these problems far more effectively, making these modern robust methods understandable, practical, and easily accessible. Highlights: * Assumes no previous training in statistics * Explains when and why modern methods provide more accurate results * Provides simple descriptions of when and why conventional methods can be highly unsatisfactory * Covers the latest developments on multiple comparisons * Includes recent advances in risk-based methods * Features many illustrations and examples using data from real studies * Describes and illustrates easy-to-use s-plus functions for applying cutting-edge techniques "The book is quite unique in that it offers a lot of up-to-date statistical tools. No other book at this level comes close in this aspect." Xuming He -University of Illinois, Urbana