Numerical Modeling of Seismic Wave Propagation

Numerical Modeling of Seismic Wave Propagation PDF Author: Johan O. A. Robertsson
Publisher: SEG Books
ISBN: 1560802901
Category : Nature
Languages : en
Pages : 115

Get Book Here

Book Description
The decades following SEG's 1990 volume on numerical modeling showed a step change in the application and use of full wave equation modeling methods enabled by the increase in computational power. Full waveform inversion, reverse time migration, and 3D elastic finite-difference synthetic data generation are examples. A searchable CD is included.

Numerical Modeling of Seismic Wave Propagation

Numerical Modeling of Seismic Wave Propagation PDF Author: Johan O. A. Robertsson
Publisher: SEG Books
ISBN: 1560802901
Category : Nature
Languages : en
Pages : 115

Get Book Here

Book Description
The decades following SEG's 1990 volume on numerical modeling showed a step change in the application and use of full wave equation modeling methods enabled by the increase in computational power. Full waveform inversion, reverse time migration, and 3D elastic finite-difference synthetic data generation are examples. A searchable CD is included.

Modelling Visco-elastic Seismic Wave Propagation

Modelling Visco-elastic Seismic Wave Propagation PDF Author: Eva Grasso
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The numerical simulation of elastic wave propagation in unbounded media is a topical issue. This need arises in a variety of real life engineering problems, from the modelling of railway- or machinery-induced vibrations to the analysis of seismic wave propagation and soil-structure interaction problems. Due to the complexity of the involved geometries and materials behavior, modelling such situations requires sophisticated numerical methods. The Boundary Element method (BEM) is a very effective approach for dynamical problems in spatially-extended regions (idealized as unbounded), especially since the advent of fast BEMs such as the Fast Multipole Method (FMM) used in this work. The BEM is based on a boundary integral formulation which requires the discretization of the only domain boundary (i.e. a surface in 3-D) and accounts implicitly for the radiation conditions at infinity. As a main disadvantage, the BEM leads a priori to a fully-populated and (using the collocation approach) non-symmetrical coefficient matrix, which make the traditional implementation of this method prohibitive for large problems (say O(106) boundary DoFs). Applied to the BEM, the Multi-Level Fast Multipole Method (ML-FMM) strongly lowers the complexity in computational work and memory that hinder the classical formulation, making the ML-FMBEM very competitive in modelling elastic wave propagation. The elastodynamic version of the Fast Multipole BEM (FMBEM), in a form enabling piecewise-homogeneous media, has for instance been successfully used to solve seismic wave propagation problems in a previous work (thesis dissertation of S. Chaillat, ENPC, 2008). This thesis aims at extending the capabilities of the existing frequency-domain elastodynamic FMBEM in two directions. Firstly, the time-harmonic elastodynamic ML-FMBEM formulation has been extended to the case of weakly dissipative viscoelastic media. Secondly, the FMBEM and the Finite Element Method (FEM) have been coupled to take advantage of the versatility of the FEM to model complex geometries and non-linearities while the FM-BEM accounts for wave propagation in the surrounding unbounded medium. In this thesis, we consider two strategies for coupling the FMBEM and the FEM to solve three-dimensional time-harmonic wave propagation problems in unbounded domains. The main idea is to separate one or more bounded subdomains (modelled by the FEM) from the complementary semi-infinite viscoelastic propagation medium (modelled by the FMBEM) through a non-overlapping domain decomposition. Two coupling strategies have been implemented and their performances assessed and compared on several examples.

Seismic Wave Propagation in Non-Homogeneous Elastic Media by Boundary Elements

Seismic Wave Propagation in Non-Homogeneous Elastic Media by Boundary Elements PDF Author: George D. Manolis
Publisher: Springer
ISBN: 3319452061
Category : Technology & Engineering
Languages : en
Pages : 301

Get Book Here

Book Description
This book focuses on the mathematical potential and computational efficiency of the Boundary Element Method (BEM) for modeling seismic wave propagation in either continuous or discrete inhomogeneous elastic/viscoelastic, isotropic/anisotropic media containing multiple cavities, cracks, inclusions and surface topography. BEM models may take into account the entire seismic wave path from the seismic source through the geological deposits all the way up to the local site under consideration. The general presentation of the theoretical basis of elastodynamics for inhomogeneous and heterogeneous continua in the first part is followed by the analytical derivation of fundamental solutions and Green's functions for the governing field equations by the usage of Fourier and Radon transforms. The numerical implementation of the BEM is for antiplane in the second part as well as for plane strain boundary value problems in the third part. Verification studies and parametric analysis appear throughout the book, as do both recent references and seminal ones from the past. Since the background of the authors is in solid mechanics and mathematical physics, the presented BEM formulations are valid for many areas such as civil engineering, geophysics, material science and all others concerning elastic wave propagation through inhomogeneous and heterogeneous media. The material presented in this book is suitable for self-study. The book is written at a level suitable for advanced undergraduates or beginning graduate students in solid mechanics, computational mechanics and fracture mechanics.

Wave Fields in Real Media

Wave Fields in Real Media PDF Author: José M. Carcione
Publisher: Elsevier
ISBN: 0081000030
Category : Science
Languages : en
Pages : 690

Get Book Here

Book Description
Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may also find this text useful. New to this edition: This new edition presents the fundamentals of wave propagation in Anisotropic, Anelastic, Porous Media while also incorporating the latest research from the past 7 years, including that of the author. The author presents all the equations and concepts necessary to understand the physics of wave propagation. These equations form the basis for modeling and inversion of seismic and electromagnetic data. Additionally, demonstrations are given, so the book can be used to teach post-graduate courses. Addition of new and revised content is approximately 30%. Examines the fundamentals of wave propagation in anisotropic, anelastic and porous media Presents all equations and concepts necessary to understand the physics of wave propagation, with examples Emphasizes geophysics, particularly, seismic exploration for hydrocarbon reservoirs, which is essential for exploration and production of oil

Full Seismic Waveform Modelling and Inversion

Full Seismic Waveform Modelling and Inversion PDF Author: Andreas Fichtner
Publisher: Springer Science & Business Media
ISBN: 3642158072
Category : Science
Languages : en
Pages : 352

Get Book Here

Book Description
Recent progress in numerical methods and computer science allows us today to simulate the propagation of seismic waves through realistically heterogeneous Earth models with unprecedented accuracy. Full waveform tomography is a tomographic technique that takes advantage of numerical solutions of the elastic wave equation. The accuracy of the numerical solutions and the exploitation of complete waveform information result in tomographic images that are both more realistic and better resolved. This book develops and describes state of the art methodologies covering all aspects of full waveform tomography including methods for the numerical solution of the elastic wave equation, the adjoint method, the design of objective functionals and optimisation schemes. It provides a variety of case studies on all scales from local to global based on a large number of examples involving real data. It is a comprehensive reference on full waveform tomography for advanced students, researchers and professionals.

Transient Waves in Visco-Elastic Media

Transient Waves in Visco-Elastic Media PDF Author: Norman Ricker
Publisher: Elsevier
ISBN: 0444601694
Category : Science
Languages : en
Pages : 289

Get Book Here

Book Description
Developments in Solid Earth Geophysics 10: Transient Waves in Visco-Elastic Media deals with the propagation of transient elastic disturbances in visco-elastic media. More specifically, it explores the visco-elastic behavior of a medium, whether gaseous, liquid, or solid, for very-small-amplitude disturbances. This volume provides a historical overview of the theory of the propagation of elastic waves in solid bodies, along with seismic prospecting and the nature of seismograms. It also discusses the seismic experiments, the behavior of waves propagated in accordance with the Stokes wave equation, and wavelet functions and their polynomials. The book explains the laws of propagation of seismic wavelets and seismic ray paths, as well as the equations of wavelet propagation, the velocity-type seismic wavelet, and the spectrum of the wavelet. It discusses the motion of a mechanical seismograph disturbed by extraneous forces or motions. It also provides information on the differential equation describing the motion of a galvanometer, laboratory studies of wavelet contraction, and characteristics of a wavelet-contractor amplifier. Furthermore, the book explains the experimental studies of the primary seismic disturbance and internal friction. This monograph is a valuable source of information for physicists, students who want to pursue a career in geophysics or selenophysics, and those who actively working in these fields.

The Finite-Difference Modelling of Earthquake Motions

The Finite-Difference Modelling of Earthquake Motions PDF Author: Peter Moczo
Publisher: Cambridge University Press
ISBN: 1139867695
Category : Science
Languages : en
Pages : 387

Get Book Here

Book Description
Among all the numerical methods in seismology, the finite-difference (FD) technique provides the best balance of accuracy and computational efficiency. This book offers a comprehensive introduction to FD and its applications to earthquake motion. Using a systematic tutorial approach, the book requires only undergraduate degree-level mathematics and provides a user-friendly explanation of the relevant theory. It explains FD schemes for solving wave equations and elastodynamic equations of motion in heterogeneous media, and provides an introduction to the rheology of viscoelastic and elastoplastic media. It also presents an advanced FD time-domain method for efficient numerical simulations of earthquake ground motion in realistic complex models of local surface sedimentary structures. Accompanied by a suite of online resources to help put the theory into practice, this is a vital resource for professionals and academic researchers using numerical seismological techniques, and graduate students in earthquake seismology, computational and numerical modelling, and applied mathematics.

Viscoelastic Waves and Rays in Layered Media

Viscoelastic Waves and Rays in Layered Media PDF Author: Roger Borcherdt
Publisher: Cambridge University Press
ISBN: 1108495699
Category : Science
Languages : en
Pages : 519

Get Book Here

Book Description
A rigorous self-contained exposition of the mathematical theory for wave propagation and general ray theory in layered viscoelastic media.

Fundamentals of Seismic Wave Propagation

Fundamentals of Seismic Wave Propagation PDF Author: Chris Chapman
Publisher: Cambridge University Press
ISBN: 9781139451635
Category : Science
Languages : en
Pages : 646

Get Book Here

Book Description
Fundamentals of Seismic Wave Propagation, published in 2004, presents a comprehensive introduction to the propagation of high-frequency body-waves in elastodynamics. The theory of seismic wave propagation in acoustic, elastic and anisotropic media is developed to allow seismic waves to be modelled in complex, realistic three-dimensional Earth models. This book provides a consistent and thorough development of modelling methods widely used in elastic wave propagation ranging from the whole Earth, through regional and crustal seismology, exploration seismics to borehole seismics, sonics and ultrasonics. Particular emphasis is placed on developing a consistent notation and approach throughout, which highlights similarities and allows more complicated methods and extensions to be developed without difficulty. This book is intended as a text for graduate courses in theoretical seismology, and as a reference for all academic and industrial seismologists using numerical modelling methods. Exercises and suggestions for further reading are included in each chapter.

Seismic Waves and Sources

Seismic Waves and Sources PDF Author: A. Ben-Menahem
Publisher: Springer Science & Business Media
ISBN: 1461258561
Category : Science
Languages : en
Pages : 1127

Get Book Here

Book Description
Earthquakes come and go as they please, leaving behind them trails of destruc tion and casualties. Although their occurrence is little affected by what we do or think, it is the task of earth scientists to keep studying them from all possible angles until ways and means are found to divert, forecast, and eventually control them. In ancient times people were awestruck by singular geophysical events, which were attributed to supernatural powers. It was recognized only in 1760 that earthquakes originated within the earth. A hundred years later, first systematic attempts were made to apply physical principles to study them. During the next century scientists accumulated knowledge about the effects of earthquakes, their geographic patterns, the waves emitted by them, and the internal constitution of the earth. During the past 20 years, seismology has made a tremendous progress, mainly because of the advent of modern computers and improvements in data acquisi tion systems, which are now capable of digital and analog recording of ground motion over a frequency range of five orders of magnitude. These technologic developments have enabled seismologists to make measurements with far greater precision and sophistication than was previously possible. Advanced computational analyses have been applied to high-quality data and elaborate theoretical models have been devised to interpret them. As a result, far reaching advances in our knowledge of the earth's structure and the nature of earthquake sources have occurred.