Modelling Financial Time Series

Modelling Financial Time Series PDF Author: Stephen J. Taylor
Publisher: World Scientific
ISBN: 9812770852
Category : Business & Economics
Languages : en
Pages : 297

Get Book Here

Book Description
This book contains several innovative models for the prices of financial assets. First published in 1986, it is a classic text in the area of financial econometrics. It presents ARCH and stochastic volatility models that are often used and cited in academic research and are applied by quantitative analysts in many banks. Another often-cited contribution of the first edition is the documentation of statistical characteristics of financial returns, which are referred to as stylized facts. This second edition takes into account the remarkable progress made by empirical researchers during the past two decades from 1986 to 2006. In the new Preface, the author summarizes this progress in two key areas: firstly, measuring, modelling and forecasting volatility; and secondly, detecting and exploiting price trends. Sample Chapter(s). Chapter 1: Introduction (1,134 KB). Contents: Features of Financial Returns; Modelling Price Volatility; Forecasting Standard Deviations; The Accuracy of Autocorrelation Estimates; Testing the Random Walk Hypothesis; Forecasting Trends in Prices; Evidence Against the Efficiency of Futures Markets; Valuing Options; Appendix: A Computer Program for Modelling Financial Time Series. Readership: Academic researchers in finance & economics; quantitative analysts.

Modelling Financial Time Series

Modelling Financial Time Series PDF Author: Stephen J. Taylor
Publisher: World Scientific
ISBN: 9812770852
Category : Business & Economics
Languages : en
Pages : 297

Get Book Here

Book Description
This book contains several innovative models for the prices of financial assets. First published in 1986, it is a classic text in the area of financial econometrics. It presents ARCH and stochastic volatility models that are often used and cited in academic research and are applied by quantitative analysts in many banks. Another often-cited contribution of the first edition is the documentation of statistical characteristics of financial returns, which are referred to as stylized facts. This second edition takes into account the remarkable progress made by empirical researchers during the past two decades from 1986 to 2006. In the new Preface, the author summarizes this progress in two key areas: firstly, measuring, modelling and forecasting volatility; and secondly, detecting and exploiting price trends. Sample Chapter(s). Chapter 1: Introduction (1,134 KB). Contents: Features of Financial Returns; Modelling Price Volatility; Forecasting Standard Deviations; The Accuracy of Autocorrelation Estimates; Testing the Random Walk Hypothesis; Forecasting Trends in Prices; Evidence Against the Efficiency of Futures Markets; Valuing Options; Appendix: A Computer Program for Modelling Financial Time Series. Readership: Academic researchers in finance & economics; quantitative analysts.

Time Series Modelling of Water Resources and Environmental Systems

Time Series Modelling of Water Resources and Environmental Systems PDF Author: K.W. Hipel
Publisher: Elsevier
ISBN: 0080870368
Category : Technology & Engineering
Languages : en
Pages : 1053

Get Book Here

Book Description
This is a comprehensive presentation of the theory and practice of time series modelling of environmental systems. A variety of time series models are explained and illustrated, including ARMA (autoregressive-moving average), nonstationary, long memory, three families of seasonal, multiple input-single output, intervention and multivariate ARMA models. Other topics in environmetrics covered in this book include time series analysis in decision making, estimating missing observations, simulation, the Hurst phenomenon, forecasting experiments and causality. Professionals working in fields overlapping with environmetrics - such as water resources engineers, environmental scientists, hydrologists, geophysicists, geographers, earth scientists and planners - will find this book a valuable resource. Equally, environmetrics, systems scientists, economists, mechanical engineers, chemical engineers, and management scientists will find the time series methods presented in this book useful.

Time Series Modelling in Earth Sciences

Time Series Modelling in Earth Sciences PDF Author: B.K. Sahu
Publisher: CRC Press
ISBN: 1000445828
Category : Technology & Engineering
Languages : en
Pages : 304

Get Book Here

Book Description
Including the latest theories and applications of time series modelling, this book is intended for students, faculties and professionals with a background in multivariate statistics. Highlighting linear methods to yield ARIMA, SARIMA models and their multivariate (vector) extensions, the text also draws attention to non-linear methods, as well as state-space, dynamic linear, wavelet, volatility and long memory models. Also included are several solved case studies and exercises from the fields of mining, ore genesis, earthquakes, and climatology.

Regression and Time Series Model Selection

Regression and Time Series Model Selection PDF Author: Allan D. R. McQuarrie
Publisher: World Scientific
ISBN: 9812385452
Category : Mathematics
Languages : en
Pages : 479

Get Book Here

Book Description
This important book describes procedures for selecting a model from a large set of competing statistical models. It includes model selection techniques for univariate and multivariate regression models, univariate and multivariate autoregressive models, nonparametric (including wavelets) and semiparametric regression models, and quasi-likelihood and robust regression models. Information-based model selection criteria are discussed, and small sample and asymptotic properties are presented. The book also provides examples and large scale simulation studies comparing the performances of information-based model selection criteria, bootstrapping, and cross-validation selection methods over a wide range of models.

Econometric Modelling with Time Series

Econometric Modelling with Time Series PDF Author: Vance Martin
Publisher: Cambridge University Press
ISBN: 0521139813
Category : Business & Economics
Languages : en
Pages : 925

Get Book Here

Book Description
"Maximum likelihood estimation is a general method for estimating the parameters of econometric models from observed data. The principle of maximum likelihood plays a central role in the exposition of this book, since a number of estimators used in econometrics can be derived within this framework. Examples include ordinary least squares, generalized least squares and full-information maximum likelihood. In deriving the maximum likelihood estimator, a key concept is the joint probability density function (pdf) of the observed random variables, yt. Maximum likelihood estimation requires that the following conditions are satisfied. (1) The form of the joint pdf of yt is known. (2) The specification of the moments of the joint pdf are known. (3) The joint pdf can be evaluated for all values of the parameters, 9. Parts ONE and TWO of this book deal with models in which all these conditions are satisfied. Part THREE investigates models in which these conditions are not satisfied and considers four important cases. First, if the distribution of yt is misspecified, resulting in both conditions 1 and 2 being violated, estimation is by quasi-maximum likelihood (Chapter 9). Second, if condition 1 is not satisfied, a generalized method of moments estimator (Chapter 10) is required. Third, if condition 2 is not satisfied, estimation relies on nonparametric methods (Chapter 11). Fourth, if condition 3 is violated, simulation-based estimation methods are used (Chapter 12). 1.2 Motivating Examples To highlight the role of probability distributions in maximum likelihood estimation, this section emphasizes the link between observed sample data and 4 The Maximum Likelihood Principle the probability distribution from which they are drawn"-- publisher.

Multivariate Tests for Time Series Models

Multivariate Tests for Time Series Models PDF Author: Jeff B. Cromwell
Publisher: SAGE
ISBN: 9780803954403
Category : Social sciences
Languages : en
Pages : 116

Get Book Here

Book Description
Which time series test should researchers choose to best describe the interactions among a set of time series variables? Providing guidelines for identifying the appropriate multivariate time series model to use, this book explores the nature and application of these increasingly complex tests.

Time and Methods in Environmental Interfaces Modelling

Time and Methods in Environmental Interfaces Modelling PDF Author: Dragutin T Mihailovic
Publisher: Elsevier
ISBN: 0444639233
Category : Science
Languages : en
Pages : 414

Get Book Here

Book Description
Time and Methods in Environmental Interfaces Modelling: Personal Insights considers the use of time in environmental interfaces modeling and introduce new methods, from the global scale (e.g. climate modeling) to the micro scale (e.g. cell and nanotubes modeling), which primarily arise from the personal research insights of the authors. As the field of environmental science requires the application of new fundamental approaches that can lead to a better understanding of environmental phenomena, this book helps necessitate new approaches in modeling, including category theory, that follow new achievements in physics, mathematics, biology, and chemistry. - Includes the use of new mathematical tools, such as category theory, mathematical theory of general systems and formal concept analysis, matrix theory tools, stability analysis, and pseudospectra - Presents new content related to time in relation to physics and biology - Combines the word of an experienced author team with over 35 papers of collective experience

Time Series Modelling with Unobserved Components

Time Series Modelling with Unobserved Components PDF Author: Matteo M. Pelagatti
Publisher: CRC Press
ISBN: 1482225018
Category : Mathematics
Languages : en
Pages : 275

Get Book Here

Book Description
Despite the unobserved components model (UCM) having many advantages over more popular forecasting techniques based on regression analysis, exponential smoothing, and ARIMA, the UCM is not well known among practitioners outside the academic community. Time Series Modelling with Unobserved Components rectifies this deficiency by giving a practical o

Forecasting: principles and practice

Forecasting: principles and practice PDF Author: Rob J Hyndman
Publisher: OTexts
ISBN: 0987507117
Category : Business & Economics
Languages : en
Pages : 380

Get Book Here

Book Description
Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.

Modelling Trends and Cycles in Economic Time Series

Modelling Trends and Cycles in Economic Time Series PDF Author: Terence C. Mills
Publisher: Springer Nature
ISBN: 3030763595
Category : Business & Economics
Languages : en
Pages : 219

Get Book Here

Book Description
Modelling trends and cycles in economic time series has a long history, with the use of linear trends and moving averages forming the basic tool kit of economists until the 1970s. Several developments in econometrics then led to an overhaul of the techniques used to extract trends and cycles from time series. In this second edition, Terence Mills expands on the research in the area of trends and cycles over the last (almost) two decades, to highlight to students and researchers the variety of techniques and the considerations that underpin their choice for modelling trends and cycles.