Author: Eduardo Souza de Cursi
Publisher: Elsevier
ISBN: 0081004710
Category : Mathematics
Languages : en
Pages : 457
Book Description
Uncertainty Quantification (UQ) is a relatively new research area which describes the methods and approaches used to supply quantitative descriptions of the effects of uncertainty, variability and errors in simulation problems and models. It is rapidly becoming a field of increasing importance, with many real-world applications within statistics, mathematics, probability and engineering, but also within the natural sciences. Literature on the topic has up until now been largely based on polynomial chaos, which raises difficulties when considering different types of approximation and does not lead to a unified presentation of the methods. Moreover, this description does not consider either deterministic problems or infinite dimensional ones. This book gives a unified, practical and comprehensive presentation of the main techniques used for the characterization of the effect of uncertainty on numerical models and on their exploitation in numerical problems. In particular, applications to linear and nonlinear systems of equations, differential equations, optimization and reliability are presented. Applications of stochastic methods to deal with deterministic numerical problems are also discussed. Matlab® illustrates the implementation of these methods and makes the book suitable as a textbook and for self-study. - Discusses the main ideas of Stochastic Modeling and Uncertainty Quantification using Functional Analysis - Details listings of Matlab® programs implementing the main methods which complete the methodological presentation by a practical implementation - Construct your own implementations from provided worked examples
Uncertainty Quantification and Stochastic Modeling with Matlab
Author: Eduardo Souza de Cursi
Publisher: Elsevier
ISBN: 0081004710
Category : Mathematics
Languages : en
Pages : 457
Book Description
Uncertainty Quantification (UQ) is a relatively new research area which describes the methods and approaches used to supply quantitative descriptions of the effects of uncertainty, variability and errors in simulation problems and models. It is rapidly becoming a field of increasing importance, with many real-world applications within statistics, mathematics, probability and engineering, but also within the natural sciences. Literature on the topic has up until now been largely based on polynomial chaos, which raises difficulties when considering different types of approximation and does not lead to a unified presentation of the methods. Moreover, this description does not consider either deterministic problems or infinite dimensional ones. This book gives a unified, practical and comprehensive presentation of the main techniques used for the characterization of the effect of uncertainty on numerical models and on their exploitation in numerical problems. In particular, applications to linear and nonlinear systems of equations, differential equations, optimization and reliability are presented. Applications of stochastic methods to deal with deterministic numerical problems are also discussed. Matlab® illustrates the implementation of these methods and makes the book suitable as a textbook and for self-study. - Discusses the main ideas of Stochastic Modeling and Uncertainty Quantification using Functional Analysis - Details listings of Matlab® programs implementing the main methods which complete the methodological presentation by a practical implementation - Construct your own implementations from provided worked examples
Publisher: Elsevier
ISBN: 0081004710
Category : Mathematics
Languages : en
Pages : 457
Book Description
Uncertainty Quantification (UQ) is a relatively new research area which describes the methods and approaches used to supply quantitative descriptions of the effects of uncertainty, variability and errors in simulation problems and models. It is rapidly becoming a field of increasing importance, with many real-world applications within statistics, mathematics, probability and engineering, but also within the natural sciences. Literature on the topic has up until now been largely based on polynomial chaos, which raises difficulties when considering different types of approximation and does not lead to a unified presentation of the methods. Moreover, this description does not consider either deterministic problems or infinite dimensional ones. This book gives a unified, practical and comprehensive presentation of the main techniques used for the characterization of the effect of uncertainty on numerical models and on their exploitation in numerical problems. In particular, applications to linear and nonlinear systems of equations, differential equations, optimization and reliability are presented. Applications of stochastic methods to deal with deterministic numerical problems are also discussed. Matlab® illustrates the implementation of these methods and makes the book suitable as a textbook and for self-study. - Discusses the main ideas of Stochastic Modeling and Uncertainty Quantification using Functional Analysis - Details listings of Matlab® programs implementing the main methods which complete the methodological presentation by a practical implementation - Construct your own implementations from provided worked examples
Proceedings of the 5th International Symposium on Uncertainty Quantification and Stochastic Modelling
Author: José Eduardo Souza De Cursi
Publisher: Springer Nature
ISBN: 3030536696
Category : Technology & Engineering
Languages : en
Pages : 478
Book Description
This proceedings book discusses state-of-the-art research on uncertainty quantification in mechanical engineering, including statistical data concerning the entries and parameters of a system to produce statistical data on the outputs of the system. It is based on papers presented at Uncertainties 2020, a workshop organized on behalf of the Scientific Committee on Uncertainty in Mechanics (Mécanique et Incertain) of the AFM (French Society of Mechanical Sciences), the Scientific Committee on Stochastic Modeling and Uncertainty Quantification of the ABCM (Brazilian Society of Mechanical Sciences) and the SBMAC (Brazilian Society of Applied Mathematics).
Publisher: Springer Nature
ISBN: 3030536696
Category : Technology & Engineering
Languages : en
Pages : 478
Book Description
This proceedings book discusses state-of-the-art research on uncertainty quantification in mechanical engineering, including statistical data concerning the entries and parameters of a system to produce statistical data on the outputs of the system. It is based on papers presented at Uncertainties 2020, a workshop organized on behalf of the Scientific Committee on Uncertainty in Mechanics (Mécanique et Incertain) of the AFM (French Society of Mechanical Sciences), the Scientific Committee on Stochastic Modeling and Uncertainty Quantification of the ABCM (Brazilian Society of Mechanical Sciences) and the SBMAC (Brazilian Society of Applied Mathematics).
Strengthening Data Science Methods for Department of Defense Personnel and Readiness Missions
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309450780
Category : Mathematics
Languages : en
Pages : 165
Book Description
The Office of the Under Secretary of Defense (Personnel & Readiness), referred to throughout this report as P&R, is responsible for the total force management of all Department of Defense (DoD) components including the recruitment, readiness, and retention of personnel. Its work and policies are supported by a number of organizations both within DoD, including the Defense Manpower Data Center (DMDC), and externally, including the federally funded research and development centers (FFRDCs) that work for DoD. P&R must be able to answer questions for the Secretary of Defense such as how to recruit people with an aptitude for and interest in various specialties and along particular career tracks and how to assess on an ongoing basis service members' career satisfaction and their ability to meet new challenges. P&R must also address larger-scale questions, such as how the current realignment of forces to the Asia-Pacific area and other regions will affect recruitment, readiness, and retention. While DoD makes use of large-scale data and mathematical analysis in intelligence, surveillance, reconnaissance, and elsewhereâ€"exploiting techniques such as complex network analysis, machine learning, streaming social media analysis, and anomaly detectionâ€"these skills and capabilities have not been applied as well to the personnel and readiness enterprise. Strengthening Data Science Methods for Department of Defense Personnel and Readiness Missions offers and roadmap and implementation plan for the integration of data analysis in support of decisions within the purview of P&R.
Publisher: National Academies Press
ISBN: 0309450780
Category : Mathematics
Languages : en
Pages : 165
Book Description
The Office of the Under Secretary of Defense (Personnel & Readiness), referred to throughout this report as P&R, is responsible for the total force management of all Department of Defense (DoD) components including the recruitment, readiness, and retention of personnel. Its work and policies are supported by a number of organizations both within DoD, including the Defense Manpower Data Center (DMDC), and externally, including the federally funded research and development centers (FFRDCs) that work for DoD. P&R must be able to answer questions for the Secretary of Defense such as how to recruit people with an aptitude for and interest in various specialties and along particular career tracks and how to assess on an ongoing basis service members' career satisfaction and their ability to meet new challenges. P&R must also address larger-scale questions, such as how the current realignment of forces to the Asia-Pacific area and other regions will affect recruitment, readiness, and retention. While DoD makes use of large-scale data and mathematical analysis in intelligence, surveillance, reconnaissance, and elsewhereâ€"exploiting techniques such as complex network analysis, machine learning, streaming social media analysis, and anomaly detectionâ€"these skills and capabilities have not been applied as well to the personnel and readiness enterprise. Strengthening Data Science Methods for Department of Defense Personnel and Readiness Missions offers and roadmap and implementation plan for the integration of data analysis in support of decisions within the purview of P&R.
Modelling Stochastic Uncertainties
Author: Mohammed Elmusrati
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111585050
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
This book delves into dynamic systems modeling, probability theory, stochastic processes, estimation theory, Kalman filters, and game theory. While many excellent books offer insights into these topics, our proposed book takes a distinctive approach, integrating these diverse subjects to address uncertainties and demonstrate their practical applications. The author aims to cater to a broad spectrum of readers. The book features approximately 150 meticulously explained solved examples and numerous simulation programs, each with detailed explanations. "Modelling Stochastic Uncertainties" provides a comprehensive understanding of uncertainties and their implications across various domains. Here is a brief exploration of the chapters: Chapter 1: Introduces the book's philosophy and the manifestation of uncertainties. Chapter 2: Lays the mathematical foundation, focusing on probability theory and stochastic processes, covering random variables, probability distributions, expectations, characteristic functions, and limits, along with various stochastic processes and their properties. Chapter 3: Discusses managing uncertainty through deterministic and stochastic dynamic modeling techniques. Chapter 4: Explores parameter estimation amid uncertainty, presenting key concepts of estimation theory. Chapter 5: Focuses on Kalman filters for state estimation amid uncertain measurements and Gaussian additive noise. Chapter 6: Examines how uncertainty influences decision-making in strategic interactions and conflict management. Overall, the book provides a thorough understanding of uncertainties, from theoretical foundations to practical applications in dynamic systems modeling, estimation, and game theory.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111585050
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
This book delves into dynamic systems modeling, probability theory, stochastic processes, estimation theory, Kalman filters, and game theory. While many excellent books offer insights into these topics, our proposed book takes a distinctive approach, integrating these diverse subjects to address uncertainties and demonstrate their practical applications. The author aims to cater to a broad spectrum of readers. The book features approximately 150 meticulously explained solved examples and numerous simulation programs, each with detailed explanations. "Modelling Stochastic Uncertainties" provides a comprehensive understanding of uncertainties and their implications across various domains. Here is a brief exploration of the chapters: Chapter 1: Introduces the book's philosophy and the manifestation of uncertainties. Chapter 2: Lays the mathematical foundation, focusing on probability theory and stochastic processes, covering random variables, probability distributions, expectations, characteristic functions, and limits, along with various stochastic processes and their properties. Chapter 3: Discusses managing uncertainty through deterministic and stochastic dynamic modeling techniques. Chapter 4: Explores parameter estimation amid uncertainty, presenting key concepts of estimation theory. Chapter 5: Focuses on Kalman filters for state estimation amid uncertain measurements and Gaussian additive noise. Chapter 6: Examines how uncertainty influences decision-making in strategic interactions and conflict management. Overall, the book provides a thorough understanding of uncertainties, from theoretical foundations to practical applications in dynamic systems modeling, estimation, and game theory.
Modeling with Stochastic Programming
Author: Alan J. King
Publisher: Springer Science & Business Media
ISBN: 0387878173
Category : Mathematics
Languages : en
Pages : 189
Book Description
While there are several texts on how to solve and analyze stochastic programs, this is the first text to address basic questions about how to model uncertainty, and how to reformulate a deterministic model so that it can be analyzed in a stochastic setting. This text would be suitable as a stand-alone or supplement for a second course in OR/MS or in optimization-oriented engineering disciplines where the instructor wants to explain where models come from and what the fundamental issues are. The book is easy-to-read, highly illustrated with lots of examples and discussions. It will be suitable for graduate students and researchers working in operations research, mathematics, engineering and related departments where there is interest in learning how to model uncertainty. Alan King is a Research Staff Member at IBM's Thomas J. Watson Research Center in New York. Stein W. Wallace is a Professor of Operational Research at Lancaster University Management School in England.
Publisher: Springer Science & Business Media
ISBN: 0387878173
Category : Mathematics
Languages : en
Pages : 189
Book Description
While there are several texts on how to solve and analyze stochastic programs, this is the first text to address basic questions about how to model uncertainty, and how to reformulate a deterministic model so that it can be analyzed in a stochastic setting. This text would be suitable as a stand-alone or supplement for a second course in OR/MS or in optimization-oriented engineering disciplines where the instructor wants to explain where models come from and what the fundamental issues are. The book is easy-to-read, highly illustrated with lots of examples and discussions. It will be suitable for graduate students and researchers working in operations research, mathematics, engineering and related departments where there is interest in learning how to model uncertainty. Alan King is a Research Staff Member at IBM's Thomas J. Watson Research Center in New York. Stein W. Wallace is a Professor of Operational Research at Lancaster University Management School in England.
Stochastic Programming
Author: Willem K. Klein Haneveld
Publisher: Springer Nature
ISBN: 3030292193
Category : Business & Economics
Languages : en
Pages : 255
Book Description
This book provides an essential introduction to Stochastic Programming, especially intended for graduate students. The book begins by exploring a linear programming problem with random parameters, representing a decision problem under uncertainty. Several models for this problem are presented, including the main ones used in Stochastic Programming: recourse models and chance constraint models. The book not only discusses the theoretical properties of these models and algorithms for solving them, but also explains the intrinsic differences between the models. In the book’s closing section, several case studies are presented, helping students apply the theory covered to practical problems. The book is based on lecture notes developed for an Econometrics and Operations Research course for master students at the University of Groningen, the Netherlands - the longest-standing Stochastic Programming course worldwide.
Publisher: Springer Nature
ISBN: 3030292193
Category : Business & Economics
Languages : en
Pages : 255
Book Description
This book provides an essential introduction to Stochastic Programming, especially intended for graduate students. The book begins by exploring a linear programming problem with random parameters, representing a decision problem under uncertainty. Several models for this problem are presented, including the main ones used in Stochastic Programming: recourse models and chance constraint models. The book not only discusses the theoretical properties of these models and algorithms for solving them, but also explains the intrinsic differences between the models. In the book’s closing section, several case studies are presented, helping students apply the theory covered to practical problems. The book is based on lecture notes developed for an Econometrics and Operations Research course for master students at the University of Groningen, the Netherlands - the longest-standing Stochastic Programming course worldwide.
Research Directions in Computational Mechanics
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309046483
Category : Technology & Engineering
Languages : en
Pages : 145
Book Description
Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.
Publisher: National Academies Press
ISBN: 0309046483
Category : Technology & Engineering
Languages : en
Pages : 145
Book Description
Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.
Uncertainty Quantification
Author: Christian Soize
Publisher: Springer
ISBN: 3319543393
Category : Computers
Languages : en
Pages : 344
Book Description
This book presents the fundamental notions and advanced mathematical tools in the stochastic modeling of uncertainties and their quantification for large-scale computational models in sciences and engineering. In particular, it focuses in parametric uncertainties, and non-parametric uncertainties with applications from the structural dynamics and vibroacoustics of complex mechanical systems, from micromechanics and multiscale mechanics of heterogeneous materials. Resulting from a course developed by the author, the book begins with a description of the fundamental mathematical tools of probability and statistics that are directly useful for uncertainty quantification. It proceeds with a well carried out description of some basic and advanced methods for constructing stochastic models of uncertainties, paying particular attention to the problem of calibrating and identifying a stochastic model of uncertainty when experimental data is available. This book is intended to be a graduate-level textbook for students as well as professionals interested in the theory, computation, and applications of risk and prediction in science and engineering fields.
Publisher: Springer
ISBN: 3319543393
Category : Computers
Languages : en
Pages : 344
Book Description
This book presents the fundamental notions and advanced mathematical tools in the stochastic modeling of uncertainties and their quantification for large-scale computational models in sciences and engineering. In particular, it focuses in parametric uncertainties, and non-parametric uncertainties with applications from the structural dynamics and vibroacoustics of complex mechanical systems, from micromechanics and multiscale mechanics of heterogeneous materials. Resulting from a course developed by the author, the book begins with a description of the fundamental mathematical tools of probability and statistics that are directly useful for uncertainty quantification. It proceeds with a well carried out description of some basic and advanced methods for constructing stochastic models of uncertainties, paying particular attention to the problem of calibrating and identifying a stochastic model of uncertainty when experimental data is available. This book is intended to be a graduate-level textbook for students as well as professionals interested in the theory, computation, and applications of risk and prediction in science and engineering fields.
An Introduction to Stochastic Modeling
Author: Howard M. Taylor
Publisher: Academic Press
ISBN: 1483269272
Category : Mathematics
Languages : en
Pages : 410
Book Description
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Publisher: Academic Press
ISBN: 1483269272
Category : Mathematics
Languages : en
Pages : 410
Book Description
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Stochastic Modelling and Control
Author: M. H. A. Davis
Publisher: Springer
ISBN:
Category : Juvenile Nonfiction
Languages : en
Pages : 416
Book Description
This book aims to provide a unified treatment of input/output modelling and of control for discrete-time dynamical systems subject to random disturbances. The results presented are of wide applica bility in control engineering, operations research, econometric modelling and many other areas. There are two distinct approaches to mathematical modelling of physical systems: a direct analysis of the physical mechanisms that comprise the process, or a 'black box' approach based on analysis of input/output data. The second approach is adopted here, although of course the properties ofthe models we study, which within the limits of linearity are very general, are also relevant to the behaviour of systems represented by such models, however they are arrived at. The type of system we are interested in is a discrete-time or sampled-data system where the relation between input and output is (at least approximately) linear and where additive random dis turbances are also present, so that the behaviour of the system must be investigated by statistical methods. After a preliminary chapter summarizing elements of probability and linear system theory, we introduce in Chapter 2 some general linear stochastic models, both in input/output and state-space form. Chapter 3 concerns filtering theory: estimation of the state of a dynamical system from noisy observations. As well as being an important topic in its own right, filtering theory provides the link, via the so-called innovations representation, between input/output models (as identified by data analysis) and state-space models, as required for much contemporary control theory.
Publisher: Springer
ISBN:
Category : Juvenile Nonfiction
Languages : en
Pages : 416
Book Description
This book aims to provide a unified treatment of input/output modelling and of control for discrete-time dynamical systems subject to random disturbances. The results presented are of wide applica bility in control engineering, operations research, econometric modelling and many other areas. There are two distinct approaches to mathematical modelling of physical systems: a direct analysis of the physical mechanisms that comprise the process, or a 'black box' approach based on analysis of input/output data. The second approach is adopted here, although of course the properties ofthe models we study, which within the limits of linearity are very general, are also relevant to the behaviour of systems represented by such models, however they are arrived at. The type of system we are interested in is a discrete-time or sampled-data system where the relation between input and output is (at least approximately) linear and where additive random dis turbances are also present, so that the behaviour of the system must be investigated by statistical methods. After a preliminary chapter summarizing elements of probability and linear system theory, we introduce in Chapter 2 some general linear stochastic models, both in input/output and state-space form. Chapter 3 concerns filtering theory: estimation of the state of a dynamical system from noisy observations. As well as being an important topic in its own right, filtering theory provides the link, via the so-called innovations representation, between input/output models (as identified by data analysis) and state-space models, as required for much contemporary control theory.