Modélisation et simulation de l'interaction multi-échelle entre îlots magnétiques et la microturbulence dans les plasmas de fusion magnétisés

Modélisation et simulation de l'interaction multi-échelle entre îlots magnétiques et la microturbulence dans les plasmas de fusion magnétisés PDF Author: Magali Muraglia
Publisher:
ISBN:
Category :
Languages : fr
Pages : 169

Get Book Here

Book Description
Un tokamak est le siège de diverses instabilités qui peuvent être à l'origine d'une dégradation du confinement magnétique. Cette thèse porte sur l'étude de la dynamique d'un îlot magnétique en présence de turbulence dans les plasmas magnétisés. Plus précisement, il s'agit de comprendre la nature de l'interaction multi-échelle entre la turbulence, générée par un gradient de pression et la courbure du champ magnétique, et un îlot magnétique formé par un mode de déchiremement classique. Grâce à la déduction d'un modèle 2D prenant en compte ces deux sources d'instabilité, des études linéaires analytiques et numériques permettent de comprendre l'effet de la pression sur la phase de croissance linéaire d'un îlot magnétique et mettent en évidence la stabilisation des modes interchanges en présence d'un champ magnétique. Ensuite, des simulations non-linéaires du modèle sont présentées pour comprendre comment le mécanisme d'interchange affecte la dynamique non-linéaire d'un îlot magnétique. De façon générale, le gradient de pression et la courbure du champ magnétique affectent fortement l'évolution non-linéaire de l'îlot magnétique permettant l'apparition de bifurcations dynamiques dont la nature doit être caractérisée suivant les situations dans lesquelles on se place. Enfin, la dernière partie de cette thèse est dédiée à l'étude de la rotation poloïdale de l'îlot magnétique. La déduction d'un modèle permettant de mettre en évidence les différentes origines possibles de la rotation est présentée. Il apparaît clairement que la rotation non-linéaire de l'îlot magnétique peut être gouvernée par l'écoulement poloïdal E x B et/ou par l'écoulement non-linéaire diamagnétique.

Modélisation et simulation de l'interaction multi-échelle entre îlots magnétiques et la microturbulence dans les plasmas de fusion magnétisés

Modélisation et simulation de l'interaction multi-échelle entre îlots magnétiques et la microturbulence dans les plasmas de fusion magnétisés PDF Author: Magali Muraglia
Publisher:
ISBN:
Category :
Languages : fr
Pages : 169

Get Book Here

Book Description
Un tokamak est le siège de diverses instabilités qui peuvent être à l'origine d'une dégradation du confinement magnétique. Cette thèse porte sur l'étude de la dynamique d'un îlot magnétique en présence de turbulence dans les plasmas magnétisés. Plus précisement, il s'agit de comprendre la nature de l'interaction multi-échelle entre la turbulence, générée par un gradient de pression et la courbure du champ magnétique, et un îlot magnétique formé par un mode de déchiremement classique. Grâce à la déduction d'un modèle 2D prenant en compte ces deux sources d'instabilité, des études linéaires analytiques et numériques permettent de comprendre l'effet de la pression sur la phase de croissance linéaire d'un îlot magnétique et mettent en évidence la stabilisation des modes interchanges en présence d'un champ magnétique. Ensuite, des simulations non-linéaires du modèle sont présentées pour comprendre comment le mécanisme d'interchange affecte la dynamique non-linéaire d'un îlot magnétique. De façon générale, le gradient de pression et la courbure du champ magnétique affectent fortement l'évolution non-linéaire de l'îlot magnétique permettant l'apparition de bifurcations dynamiques dont la nature doit être caractérisée suivant les situations dans lesquelles on se place. Enfin, la dernière partie de cette thèse est dédiée à l'étude de la rotation poloïdale de l'îlot magnétique. La déduction d'un modèle permettant de mettre en évidence les différentes origines possibles de la rotation est présentée. Il apparaît clairement que la rotation non-linéaire de l'îlot magnétique peut être gouvernée par l'écoulement poloïdal E x B et/ou par l'écoulement non-linéaire diamagnétique.

On the Interactions of Magnetic Fluctuations, Zonal Flows, & Microturbulence in Fusion Plasmas

On the Interactions of Magnetic Fluctuations, Zonal Flows, & Microturbulence in Fusion Plasmas PDF Author: Zachary R. Williams
Publisher:
ISBN:
Category :
Languages : en
Pages : 116

Get Book Here

Book Description
A key aspect of turbulent dynamics is the inherent coupling of fluctuations at disparate spatial scales. One significant multi-scale phenomenon is the degradation of zonal flows by large-scale radial magnetic perturbations that result in an increase of small-scale microturbulence and affiliated transport. Two prominent sources of radial magnetic field fluctuations are examined in this thesis, resonant magnetic perturbations (RMPs) in tokamaks and tearing modes in reversed-field pinches (RFPs). This interplay is studied with gyrokinetics to model DIII-D tokamak and MST RFP plasmas. An imposed magnetic perturbation that mimics a tearing mode increases the level of trapped-electron-mode turbulence to a level consistent with fluctuation and transport measurements in MST plasmas. This motivated a dedicated experiment on DIII-D to study the impact of varying RMP amplitude on turbulence in inboard-limited L-mode plasmas. Highlights of the theory-experiment comparison are presented. To study the self-consistent multi-scale interaction of the tearing mode physics, nonlinear simulations containing both tearing mode (driven from equilibrium current gradients) and microinstability scales are performed in a slab geometry. The system is characterized by distinct microinstability- and tearing-dominated regimes. Within the microturbulence-dominated phase, the slow tearing mode growth corresponds directly to a decay in zonal flow. The turbulence levels driven at both large and small scales is increased from single-scale simulations, clearly demonstrated the importance of cross scale interactions.

Turbulence plasma dans les étoiles et les tokamaks

Turbulence plasma dans les étoiles et les tokamaks PDF Author: Constance Emeriau-Viard
Publisher:
ISBN:
Category :
Languages : fr
Pages : 0

Get Book Here

Book Description
Dans les plasmas magnétisés, l'interaction entre la turbulence, le magnétisme et les cisaillements grandes échelles joue un rôle important sur l'organisation du plasma et sur les processus de transport qui s'y produisent. Cette interaction et ses conséquences peuvent être étudiées dans leur développement non linéaire avec des simulations numériques hautes performance multi-dimensionnelles et par une analyse détaillée (dans l'espace physique et dans l'espace spectral) des processus de transport dans les plasmas. Dans cette thèse, nous nous intéresserons au cas des plasmas stellaires et de tokamaks. La première partie introduit les concepts fondamentaux de la physique des plasmas, communs aux deux domaines, puis les spécificités de chacun des plasmas avec la magnétohydrodynamique et l'évolution stellaire pour les plasmas stellaires et la théorie gyrocinétique pour les plasmas de tokamaks. La seconde partie se concentre sur les plasmas stellaires. À l'aide de simulations numériques 3D d'étoiles de type GK avec le code ASH, nous étudions l'influence du nombre de Rossby sur la convection. On détermine une transition à Ro=1 entre les faibles Ro ayant un profil de rotation différentielle de type solaire, ou à bandes comme Jupiter, et les Ro plus élevés pour lesquels la rotation est anti-solaire avec un équateur plus lent que les pôles. Nous proposons ensuite une suite de neuf modèles permettant de simuler les changements du champ magnétique au cours de l'évolution stellaire, de la phase d'étoile jeune, avec disque d'accrétion, à l'âge solaire. Au cours de la pré-séquence-principale (PMS), le taux de rotation et la structure interne de l'étoile changent de manière importante avec l'apparition et la croissance du coeur radiatif. Nous trouvons que que l'énergie magnétique augmente alors globalement à l'approche de la zero age main sequence (ZAMS). La topologie du champ devient de plus en plus complexe avec une composante dipolaire plus faible et un champ magnétique moins axisymétrique. Ce champ est généré par une dynamo type alpha-Omega pour laquelle l'effet Omega devient de plus en plus dominant lorsque l'étoile passe de 1Mans à 50 Mans, i.e. la zone convective s'amincit. Le champ magnétique contenu dans la zone radiative possède une topologie mixte poloidale toroidale qui satisfait les critères de stabilité des instabilités MHD en zone radiative. Une fois arrivé sur la ZAMS, la structure interne de l'étoile se stabilise et seul le taux de rotation change au cours de la séquence principale (MS), l'étoile étant ralentit par les vents magnétisés. Le ralentissement de l'étoile provoque une diminution de l'énergie magnétique contenue dans la zone convective. Une transition du profil de rotation différentielle peut être observée car le nombre de Rossby se rapproche de 1 et nous analysons les conséquences sur la topologie et les transferts spectraux entre les composantes du champ magnétique dynamo. La troisième partie de ce manuscrit aborde également les transferts spectraux d'énergie grande échelle dans les plasmas de tokamaks. L'utilisation du code gyrocinétique 5D GYSELA permet de simuler ces avalanches. Après une caractérisation de ces transferts, en espace et en vitesse, nous utilisons un diagnostic spectral sur l'entropie pour mieux comprendre leur origine et leur dynamique. Un lien de causalité "flux de chaleur turbulent" - gradient de température -- "cisaillement" peut alors être mis en évidence. Finalement, au vu des résultats obtenus, nous discutons les similarités entre les deux type de plasmas et proposons des pistes pour de futurs développements.

Dynamique des ilots magnétiques en présence de feuille de courant et en milieu turbulent

Dynamique des ilots magnétiques en présence de feuille de courant et en milieu turbulent PDF Author: Alexandre Poye
Publisher:
ISBN:
Category :
Languages : fr
Pages : 0

Get Book Here

Book Description
La stabilité des plasmas de fusion est un enjeu crucial dans le cadre du développement de nouvelles sources d'énergie. L'interaction entre le plasma et le champ magnétique peut en effet amener à la destruction du confinement : c'est une disruption. Le sujet de cette thèse porte sur les îlots magnétiques, une des causes des disruptions. Ces îlots magnétiques sont observés expérimentalement et analytiquement. Les théories peuvent prévoir la croissance d'un îlot magnétique et sa taille, mais les restrictions sur le domaine de validité de la théorie sont fortes et elles dé-corrèlent largement les domaines de validité théoriques et expérimentaux. Dans une première partie, nous montrons que, génériquement, les méthodes de contrôle dynamiques d'évolution des îlots magnétiques, basées notamment sur une relation entre la taille de l'îlot et la perturbation de flux magnétique à la résonance, devraient prendre en compte la modification du flux magnétique moyenné le long de la ligne de champ. Nous donnons aussi des limites quand au cadre de notre assertion (coalescence des îlots, effondrement du point X, ...). la seconde partie de la thèse aborde un nouvel effet dû au courant de part et d'autre de l'îlot magnétique. Il change la dynamique de l'îlot et la perception que l'on en a. Jusqu'à présent la dynamique de l'îlot était étudiée principalement au travers de mécanisme actifs au niveau de la résonance. Nous démontrons que la présence de courant aux abords de l'îlot peuvent jouer un rôle très important sur sa croissance et sur sa taille finale. La troisième partie détaille comment la turbulence aux abords d'un îlot magnétique peut affecter sa croissance.

Simulation numérique de modèles cinétiques réduits pour l'étude de la dynamique des plasmas de fusion par confinement magnétique

Simulation numérique de modèles cinétiques réduits pour l'étude de la dynamique des plasmas de fusion par confinement magnétique PDF Author: David Coulette
Publisher:
ISBN:
Category :
Languages : fr
Pages : 0

Get Book Here

Book Description
Ce travail de recherche s'inscrit dans la problématique de la compréhension des phénomènes de transport turbulent de l'énergie et des particules au sein des plasmas de coeur des machines de fusion thermonucléaire par confinement magnétique. L'instabilité dite de gradient de température ionique, considérée comme une des sources majeures de transport turbulent, y est étudiée au moyen d'un modèle gyrocinétique. L'originalité de ce travail consiste en l'utilisation d'un modèle réduit, dit "Multi-Water-Bag", qui permet de réduire la dimension du problème tout en préservant les effets cinétiques. Ce modèle est développé dans deux types de géométries de champ de confinement. En géométrie cylindrique, l'évolution de l'instabilité est analysée au travers de trois modèles dynamiques : linéaire, quasi-linéaire et non-linéaire. L'analyse de stabilité linéaire permet d'obtenir les caractéristiques spectrales et géométriques de l'instabilité à partir d'une situation d'équilibre instable. Dans un deuxième temps, la confrontation par le biais de simulations numériques trois modèles dynamiques permet l'examen du développement de la turbulence, ainsi que les premières étapes de la saturation de l'instabilité. En géométrie torique, une analyse linéaire de stabilité est effectuée au moyen de deux méthodes, respectivement par intégration en temps et analyse spectrale, pour obtenir les caractéristiques des modes les plus instables. Pour chacune des géométries envisagées, les diverses méthodes numériques implémentées sont décrites et leurs performances évaluées. Une attention particulière est portée tout au long de ce travail à la mise en balance des coûts et bénéfices de la réduction Multi-Water-Bag.

Interactions entre perturbations magnétiques macroscopiques et turbulence microscopique dans un modèle 3D d'un plasma de tokamak

Interactions entre perturbations magnétiques macroscopiques et turbulence microscopique dans un modèle 3D d'un plasma de tokamak PDF Author: Arnaud Monnier
Publisher:
ISBN:
Category :
Languages : fr
Pages : 134

Get Book Here

Book Description
Cette thèse porte sur l'interaction entre un plasma de bord de tokamak et une perturbation magnétique résonante (RMP), utilisée principalement pour le contrôle de phénomènes de relaxations quasi-périodiques, présents dans un régime de confinement amélioré. Il permet notamment d'atteindre des conditions favorables aux réactions de fusion nucléaire. Il a été observé que la présence de perturbations magnétiques modifie la topologie magnétique au bord ce qui engendre une diminution de l'amplitude des relaxations, voire leur suppression. De précédents travaux ont étudié l'effet de perturbations magnétiques sur un plasma relaxant via des simulations numériques. Le modèle utilisé était dans un cas électrostatique, c'est à dire que la topologie magnétique n'évoluait pas dans le temps. Dans cette thèse, l'étude est faite dans un modèle de plasma de bord prenant en compte les fluctuations magnétiques via le code numérique EMEDGE3D. Ce code a été modifié pour pouvoir imposer une perturbation magnétique résonante. Des vérifications par des modèles réduits ont été menées sur la pénétration d'une perturbation magnétique ainsi que sur l'effet d'une vitesse cisaillée sur la pénétration. Ensuite, un RMP a été imposé dans un plasma non turbulent avec et sans vitesse cisaillée. Un phénomène d'écrantage, empêchant la pénétration d'une perturbation, a été identifié analytiquement et observé dans les simulations. Cette étude a été réitérée dans un plasma turbulent, et aussi en présence d'une barrière (vitesse cisaillée). Le plasma turbulent engendre une amplification du RMP, tandis que la barrière est affectée par la présence de cellules de convection fixes générées par la perturbation.

Simulation de l'interaction entre les ions du plasma et l'onde à fréquence cyclotronique ionique avec les codes EVE et SPOT

Simulation de l'interaction entre les ions du plasma et l'onde à fréquence cyclotronique ionique avec les codes EVE et SPOT PDF Author: Julie Joly
Publisher:
ISBN:
Category :
Languages : fr
Pages : 0

Get Book Here

Book Description
La fusion thermonucléaire est l'énergie propre des étoiles et la solution la plus favorable à la transition énergétique. Le principe de la fusion est de rassembler des noyaux légers dégageant ainsi une grande énergie (cinq fois plus que la réaction de fission utilisée dans les centrales nucléaire à ce jour). La réaction de fusion se produit naturellement dans les étoiles comme le Soleil c'est pourquoi il faut imiter les conditions de température et de densité du Soleil sur terre. Pour cela on utilise une machine ressemblant à un donuts appelé Tokamak. Mon travail dans ce domaine a consisté à améliorer les méthodes de modélisation des chauffages de ces Tokamaks dans le but d'augmenter les réactions de fusion en créant un workflow combinant plusieurs codes appelé modélisation auto-cohérente.

Caractérisation et modélisation des plasmas micro-onde multi-dipolaires

Caractérisation et modélisation des plasmas micro-onde multi-dipolaires PDF Author: Tan Vinh Tran
Publisher:
ISBN:
Category :
Languages : fr
Pages : 192

Get Book Here

Book Description
L'extension d'échelle des procédés plasma fonctionnant à très faibles pressions est l'une des problématiques à résoudre pour leur essor au niveau industriel. Une solution consiste à distribuer uniformément des sources de plasma élémentaires dans lesquelles le plasma est produit par couplage à la résonance cyclotronique électronique (RCE). Ces sources élémentaires sont constituées d'un aimant permanent cylindrique (dipôle magnétique) disposé à l'extrémité d'une structure coaxiale d'amenée des micro-ondes. Bien que conceptuellement simple, l'optimisation de ces sources de plasma dipolaires est complexe. Elle requiert la connaissance, d'une part, des configurations de champ magnétique statique et électrique micro-onde, et, d'autre part, des mécanismes de production du plasma, dans les zones de champ magnétique fort (condition RCE), et des mécanismes de diffusion. Ainsi, une caractérisation expérimentale des domaines de fonctionnement et des paramètres plasma par sonde de Langmuir et par spectroscopie d'émission optique a été menée sur différentes configurations de sources dipolaires. Parallèlement, une première modélisation analytique a permis de calculer des champs magnétiques de configurations simples, le mouvement et la trajectoire des électrons dans ces champs magnétiques, l'accélération des électrons par couplage RCE. Ces résultats ont permis ensuite de valider la modélisation numérique des trajectoires électroniques par une méthode hybride Particle In Cell / Monte-Carlo. L'étude expérimentale a mis en évidence des domaines de fonctionnement pression/puissance très larges, entre 15 et 200 W de puissance micro-onde et depuis 0,5 jusqu'à 15 mTorr dans l'argon. L'étude des paramètres plasma a permis de localiser la zone de couplage RCE près du plan équatorial de l'aimant et de confirmer l'influence de la géométrie de l'aimant sur cette dernière. Ces caractérisations appliquées à un réacteur cylindrique utilisant 48 sources ont montré la possibilité d'atteindre au centre de l'enceinte des densités entre 1011 et 1012 cm-3 pour des pressions d'argon de quelques mTorr. La modélisation des trajectoires électroniques au voisinage des aimants indique un meilleur confinement radial pour des aimants présentant un rapport longueur/diamètre élevé. De plus, cette étude numérique confirme les résultats de l'étude expérimentale, à savoir une zone de couplage RCE près du plan équatorial et non au voisinage de l'extrémité du guide coaxial micro-onde. Enfin, ces résultats ont été appliqués avec succés à la pulvérisation assistée par plasma multi-dipolaire de cibles, permettant en particulier une usure uniforme de ces dernières.

Caractérisation et modélisation des plasmas micro-onde multi-dipolaires

Caractérisation et modélisation des plasmas micro-onde multi-dipolaires PDF Author: Tan Vinh Tran
Publisher:
ISBN:
Category :
Languages : fr
Pages : 0

Get Book Here

Book Description
L'extension d'échelle des procédés plasma fonctionnant à très faibles pressions est l'une des problématiques à résoudre pour leur essor au niveau industriel. Une solution consiste à distribuer uniformément des sources de plasma élémentaires dans lesquelles le plasma est produit par couplage à la résonance cyclotronique électronique (RCE). Ces sources élémentaires sont constituées d'un aimant permanent cylindrique (dipôle magnétique) disposé à l'extrémité d'une structure coaxiale d'amenée des micro-ondes. Bien que conceptuellement simple, l'optimisation de ces sources de plasma dipolaires est complexe. Elle requiert la connaissance, d'une part, des configurations de champ magnétique statique et électrique micro-onde, et, d'autre part, des mécanismes de production du plasma, dans les zones de champ magnétique fort (condition RCE), et des mécanismes de diffusion. Ainsi, une caractérisation expérimentale des domaines de fonctionnement et des paramètres plasma par sonde de Langmuir et par spectroscopie d'émission optique a été menée sur différentes configurations de sources dipolaires. Parallèlement, une première modélisation analytique a permis de calculer des champs magnétiques de configurations simples, le mouvement et la trajectoire des électrons dans ces champs magnétiques, l'accélération des électrons par couplage RCE. Ces résultats ont permis ensuite de valider la modélisation numérique des trajectoires électroniques par une méthode hybride Particle In Cell / Monte-Carlo. L'étude expérimentale a mis en évidence des domaines de fonctionnement pression/puissance très larges, entre 15 et 200 W de puissance micro-onde et depuis 0,5 jusqu'à 15 mTorr dans l'argon. L'étude des paramètres plasma a permis de localiser la zone de couplage RCE près du plan équatorial de l'aimant et de confirmer l'influence de la géométrie de l'aimant sur cette dernière. Ces caractérisations appliquées à un réacteur cylindrique utilisant 48 sources ont montré la possibilité d'atteindre au centre de l'enceinte des densités entre 1011 et 1012 cm-3 pour des pressions d'argon de quelques mTorr. La modélisation des trajectoires électroniques au voisinage des aimants indique un meilleur confinement radial pour des aimants présentant un rapport longueur/diamètre élevé. De plus, cette étude numérique confirme les résultats de l'étude expérimentale, à savoir une zone de couplage RCE près du plan équatorial et non au voisinage de l'extrémité du guide coaxial micro-onde. Enfin, ces résultats ont été appliqués avec succés à la pulvérisation assistée par plasma multi-dipolaire de cibles, permettant en particulier une usure uniforme de ces dernières.

Quelques Problèmes de Physique Et Simulation Particulaire de Plasmas Froids Partiellement Magnétisés Et de Sources D'ions

Quelques Problèmes de Physique Et Simulation Particulaire de Plasmas Froids Partiellement Magnétisés Et de Sources D'ions PDF Author: Yuchao Jiang
Publisher:
ISBN:
Category :
Languages : en
Pages : 134

Get Book Here

Book Description
In this thesis we will illustrate some of the issues in the physics and modeling of partially magnetized plasmas with three specific examples that correspond to ongoing studies in the GREPHE group of the LAPLACE laboratory: 1) Electron extraction in negative ion sources for neutral beam injection in fusion 2) Instabilities in magnetron discharges and Hall thrusters 3) Plasma confinement by magnetic cusps - In the study of negative ion sources for fusion, the aim of the GREPHE group is to better understand the physics of the negative ion source, and more specifically, the questions of plasma transport across the magnetic filter and of negative ion extraction from the plasma. One of the important issues in these negative ion sources is to minimize the current of electrons that are co-extracted with the negative ions. In this thesis we focus on this aspect and we try to understand and quantify how electrons can be extracted through a grid aperture when a magnetic cusp is placed in front of the aperture. We discuss, with the help of 3D PIC MCC (Particle-In-Cell Monte Carlo Collisions) simulations, the contributions of different electron drifts (ExB drift, Grad B drift and curvature drift) and instabilities to electron extraction through a grid aperture.- Hall thrusters and magnetron discharges are ExB cylindrical devices with radial magnetic field and axial electric field. It has been known for a long time that instabilities are present in these discharges, leading to important anomalous electron transport. In this thesis we focus on one particular type of instability, called "rotating Spoke", which is known to be present in Hall thrusters and magnetron discharges and is apparent in the experiments as a luminous non-uniformity rotating in the azimuthal direction. In this work we use a 2D PIC MCC simulation to perform a parametric study of this instability. We show that, in some conditions where rotating spokes have been observed in the experiments, Grad B electron drift plays a major role in electron heating and in the formation and maintenance of the rotating spokes.- Magnetic cusps have been used for more than 60 years to confine the plasma in a large variety of conditions. An important parameter characterizing plasma confinement by cusps is the effective loss area in the presence of magnetic cusps. Some semi-empirical theories have been proposed to quantify the effective loss area and their predictions have been compared with numerous experimental results. In spite of these efforts there is no fully reliable expression of the effective wall loss as a function of different parameters such as magnetic field, electron temperature, ion mass, gas pressure, etc... We describe in this thesis an attempt at obtaining scaling laws for the effective loss width of magnetic cusps, based on 2D PIC MCC simulations.