Author: Frederick R. Adler
Publisher: Thomson Brooks/Cole
ISBN: 9781111574635
Category : Calculus
Languages : en
Pages : 930
Book Description
Designed to help life sciences students understand the role mathematics has played in breakthroughs in epidemiology, genetics, statistics, physiology, and other biological areas, MODELING THE DYNAMCICS OF LIFE: CALCULUS AND PROBABILTY FOR LIFE SCIENTISTS, 3E, International Edition, provides students with a thorough grounding in mathematics, the language, and 'the technology of thought' with which these developments are created and controlled. The text teaches the skills of describing a system, translating appropriate aspects into equations, and interpreting the results in terms of the original problem. The text helps unify biology by identifying dynamical principles that underlie a great diversity of biological processes. Standard topics from calculus courses are covered, with particular emphasis on those areas connected with modeling such as discrete-time dynamical systems, differential equations, and probability and statistics.
Modeling the Dynamics of Life
Author: Frederick R. Adler
Publisher: Thomson Brooks/Cole
ISBN: 9781111574635
Category : Calculus
Languages : en
Pages : 930
Book Description
Designed to help life sciences students understand the role mathematics has played in breakthroughs in epidemiology, genetics, statistics, physiology, and other biological areas, MODELING THE DYNAMCICS OF LIFE: CALCULUS AND PROBABILTY FOR LIFE SCIENTISTS, 3E, International Edition, provides students with a thorough grounding in mathematics, the language, and 'the technology of thought' with which these developments are created and controlled. The text teaches the skills of describing a system, translating appropriate aspects into equations, and interpreting the results in terms of the original problem. The text helps unify biology by identifying dynamical principles that underlie a great diversity of biological processes. Standard topics from calculus courses are covered, with particular emphasis on those areas connected with modeling such as discrete-time dynamical systems, differential equations, and probability and statistics.
Publisher: Thomson Brooks/Cole
ISBN: 9781111574635
Category : Calculus
Languages : en
Pages : 930
Book Description
Designed to help life sciences students understand the role mathematics has played in breakthroughs in epidemiology, genetics, statistics, physiology, and other biological areas, MODELING THE DYNAMCICS OF LIFE: CALCULUS AND PROBABILTY FOR LIFE SCIENTISTS, 3E, International Edition, provides students with a thorough grounding in mathematics, the language, and 'the technology of thought' with which these developments are created and controlled. The text teaches the skills of describing a system, translating appropriate aspects into equations, and interpreting the results in terms of the original problem. The text helps unify biology by identifying dynamical principles that underlie a great diversity of biological processes. Standard topics from calculus courses are covered, with particular emphasis on those areas connected with modeling such as discrete-time dynamical systems, differential equations, and probability and statistics.
Modeling the Dynamics of Life
Author: Frederick R. Adler
Publisher: Brooks Cole
ISBN: 9780534348168
Category : Calculus
Languages : en
Pages : 0
Book Description
Designed to help life sciences students understand the role mathematics has played in breakthroughs in epidemiology, genetics, statistics, physiology, and other biological areas, this text provides students with a thorough grounding in mathematics, the language, and 'the technology of thought' with which these developments are created and controlled.
Publisher: Brooks Cole
ISBN: 9780534348168
Category : Calculus
Languages : en
Pages : 0
Book Description
Designed to help life sciences students understand the role mathematics has played in breakthroughs in epidemiology, genetics, statistics, physiology, and other biological areas, this text provides students with a thorough grounding in mathematics, the language, and 'the technology of thought' with which these developments are created and controlled.
Modeling Life
Author: Alan Garfinkel
Publisher: Springer
ISBN: 3319597310
Category : Mathematics
Languages : en
Pages : 456
Book Description
This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?
Publisher: Springer
ISBN: 3319597310
Category : Mathematics
Languages : en
Pages : 456
Book Description
This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?
Models of Life
Author: Kim Sneppen
Publisher: Cambridge University Press
ISBN: 1107061903
Category : Science
Languages : en
Pages : 353
Book Description
An overview of current models of biological systems, reflecting the major advances that have been made over the past decade.
Publisher: Cambridge University Press
ISBN: 1107061903
Category : Science
Languages : en
Pages : 353
Book Description
An overview of current models of biological systems, reflecting the major advances that have been made over the past decade.
Modeling Dynamic Biological Systems
Author: Bruce Hannon
Publisher: Springer Science & Business Media
ISBN: 1461206510
Category : Science
Languages : en
Pages : 399
Book Description
Models help us understand the dynamics of real-world processes by using the computer to mimic the actual forces that are known or assumed to result in a system's behavior. This book does not require a substantial background in mathematics or computer science.
Publisher: Springer Science & Business Media
ISBN: 1461206510
Category : Science
Languages : en
Pages : 399
Book Description
Models help us understand the dynamics of real-world processes by using the computer to mimic the actual forces that are known or assumed to result in a system's behavior. This book does not require a substantial background in mathematics or computer science.
Dynamic Modeling
Author: Bruce Hannon
Publisher: Springer Science & Business Media
ISBN: 1468402242
Category : Computers
Languages : en
Pages : 247
Book Description
Dynamic Modeling introduces an approach to modeling that makes it a more practical, intuitive endeavour. The book enables readers to convert their understanding of a phenomenon to a computer model, and then to run the model and let it yield the inevitable dynamic consequences built into the structure of the model. Part I provides an introduction to modeling dynamic systems, while Part II offers general methods for modeling. Parts III through to VIII then apply these methods to model real-world phenomena from chemistry, genetics, ecology, economics, and engineering. To develop and execute dynamic simulation models, Dynamic Modeling comes with STELLA II run- time software for Windows-based computers, as well as computer files of sample models used in the book. A clear, approachable introduction to the modeling process, of interest in any field where real problems can be illuminated by computer simulation.
Publisher: Springer Science & Business Media
ISBN: 1468402242
Category : Computers
Languages : en
Pages : 247
Book Description
Dynamic Modeling introduces an approach to modeling that makes it a more practical, intuitive endeavour. The book enables readers to convert their understanding of a phenomenon to a computer model, and then to run the model and let it yield the inevitable dynamic consequences built into the structure of the model. Part I provides an introduction to modeling dynamic systems, while Part II offers general methods for modeling. Parts III through to VIII then apply these methods to model real-world phenomena from chemistry, genetics, ecology, economics, and engineering. To develop and execute dynamic simulation models, Dynamic Modeling comes with STELLA II run- time software for Windows-based computers, as well as computer files of sample models used in the book. A clear, approachable introduction to the modeling process, of interest in any field where real problems can be illuminated by computer simulation.
Modeling Love Dynamics
Author: Sergio E. T. Al RINALDI
Publisher: World Scientific
ISBN: 9814696323
Category : Family & Relationships
Languages : en
Pages : 256
Book Description
This book shows, for the very first time, how love stories -- a vital issue in our lives -- can be tentatively described with classical mathematics. Focus is on the derivation and analysis of reliable models that allow one to formally describe the expected evolution of love affairs from the initial state of indifference to the final romantic regime. The models are in full agreement with the basic philosophical principles of love psychology. Eight chapters are theoretically oriented and discuss the romantic relationships between important classes of individuals identified by particular psychological traits. The remaining chapters are devoted to case studies described in classical poems or in worldwide famous films.
Publisher: World Scientific
ISBN: 9814696323
Category : Family & Relationships
Languages : en
Pages : 256
Book Description
This book shows, for the very first time, how love stories -- a vital issue in our lives -- can be tentatively described with classical mathematics. Focus is on the derivation and analysis of reliable models that allow one to formally describe the expected evolution of love affairs from the initial state of indifference to the final romantic regime. The models are in full agreement with the basic philosophical principles of love psychology. Eight chapters are theoretically oriented and discuss the romantic relationships between important classes of individuals identified by particular psychological traits. The remaining chapters are devoted to case studies described in classical poems or in worldwide famous films.
Calculus for the Life Sciences
Author: James L. Cornette
Publisher: MAA Press
ISBN: 9781614446156
Category :
Languages : en
Pages : 713
Book Description
Freshman and sophomore life sciences students respond well to the modeling approach to calculus, difference equations, and differential equations presented in this book. Examples of population dynamics, pharmacokinetics, and biologically relevant physical processes are introduced in Chapter 1, and these and other life sciences topics are developed throughout the text. The students should have studied algebra, geometry, and trigonometry, but may be life sciences students because they have not enjoyed their previous mathematics courses.
Publisher: MAA Press
ISBN: 9781614446156
Category :
Languages : en
Pages : 713
Book Description
Freshman and sophomore life sciences students respond well to the modeling approach to calculus, difference equations, and differential equations presented in this book. Examples of population dynamics, pharmacokinetics, and biologically relevant physical processes are introduced in Chapter 1, and these and other life sciences topics are developed throughout the text. The students should have studied algebra, geometry, and trigonometry, but may be life sciences students because they have not enjoyed their previous mathematics courses.
Evolutionary Dynamics
Author: Martin A. Nowak
Publisher: Harvard University Press
ISBN: 0674417755
Category : Science
Languages : en
Pages : 390
Book Description
At a time of unprecedented expansion in the life sciences, evolution is the one theory that transcends all of biology. Any observation of a living system must ultimately be interpreted in the context of its evolution. Evolutionary change is the consequence of mutation and natural selection, which are two concepts that can be described by mathematical equations. Evolutionary Dynamics is concerned with these equations of life. In this book, Martin A. Nowak draws on the languages of biology and mathematics to outline the mathematical principles according to which life evolves. His work introduces readers to the powerful yet simple laws that govern the evolution of living systems, no matter how complicated they might seem. Evolution has become a mathematical theory, Nowak suggests, and any idea of an evolutionary process or mechanism should be studied in the context of the mathematical equations of evolutionary dynamics. His book presents a range of analytical tools that can be used to this end: fitness landscapes, mutation matrices, genomic sequence space, random drift, quasispecies, replicators, the Prisoner’s Dilemma, games in finite and infinite populations, evolutionary graph theory, games on grids, evolutionary kaleidoscopes, fractals, and spatial chaos. Nowak then shows how evolutionary dynamics applies to critical real-world problems, including the progression of viral diseases such as AIDS, the virulence of infectious agents, the unpredictable mutations that lead to cancer, the evolution of altruism, and even the evolution of human language. His book makes a clear and compelling case for understanding every living system—and everything that arises as a consequence of living systems—in terms of evolutionary dynamics.
Publisher: Harvard University Press
ISBN: 0674417755
Category : Science
Languages : en
Pages : 390
Book Description
At a time of unprecedented expansion in the life sciences, evolution is the one theory that transcends all of biology. Any observation of a living system must ultimately be interpreted in the context of its evolution. Evolutionary change is the consequence of mutation and natural selection, which are two concepts that can be described by mathematical equations. Evolutionary Dynamics is concerned with these equations of life. In this book, Martin A. Nowak draws on the languages of biology and mathematics to outline the mathematical principles according to which life evolves. His work introduces readers to the powerful yet simple laws that govern the evolution of living systems, no matter how complicated they might seem. Evolution has become a mathematical theory, Nowak suggests, and any idea of an evolutionary process or mechanism should be studied in the context of the mathematical equations of evolutionary dynamics. His book presents a range of analytical tools that can be used to this end: fitness landscapes, mutation matrices, genomic sequence space, random drift, quasispecies, replicators, the Prisoner’s Dilemma, games in finite and infinite populations, evolutionary graph theory, games on grids, evolutionary kaleidoscopes, fractals, and spatial chaos. Nowak then shows how evolutionary dynamics applies to critical real-world problems, including the progression of viral diseases such as AIDS, the virulence of infectious agents, the unpredictable mutations that lead to cancer, the evolution of altruism, and even the evolution of human language. His book makes a clear and compelling case for understanding every living system—and everything that arises as a consequence of living systems—in terms of evolutionary dynamics.
Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences
Author: Giovanni Naldi
Publisher: Springer Science & Business Media
ISBN: 0817649468
Category : Mathematics
Languages : en
Pages : 437
Book Description
Using examples from finance and modern warfare to the flocking of birds and the swarming of bacteria, the collected research in this volume demonstrates the common methodological approaches and tools for modeling and simulating collective behavior. The topics presented point toward new and challenging frontiers of applied mathematics, making the volume a useful reference text for applied mathematicians, physicists, biologists, and economists involved in the modeling of socio-economic systems.
Publisher: Springer Science & Business Media
ISBN: 0817649468
Category : Mathematics
Languages : en
Pages : 437
Book Description
Using examples from finance and modern warfare to the flocking of birds and the swarming of bacteria, the collected research in this volume demonstrates the common methodological approaches and tools for modeling and simulating collective behavior. The topics presented point toward new and challenging frontiers of applied mathematics, making the volume a useful reference text for applied mathematicians, physicists, biologists, and economists involved in the modeling of socio-economic systems.