Photonics Modelling and Design

Photonics Modelling and Design PDF Author: Slawomir Sujecki
Publisher: CRC Press
ISBN: 1466561270
Category : Science
Languages : en
Pages : 408

Get Book Here

Book Description
Photonics Modeling and Design delivers a concise introduction to the modeling and design of photonic devices. Assuming a general knowledge of photonics and the operating principles of fibre and semiconductor lasers, this book: Describes the analysis of the light propagation in dielectric media Discusses heat diffusion and carrier transport Applies the presented theory to develop fibre and semiconductor laser models Addresses the propagation of short optical pulses in optical fibres Puts all modeling into practical context with examples of devices currently in development or on the market Providing hands-on guidance in the form of MATLAB® scripts, tips, and other downloadable content, Photonics Modeling and Design is written for students and professionals interested in modeling photonic devices either for gaining a deeper understanding of the operation or to optimize the design.

Photonics Modelling and Design

Photonics Modelling and Design PDF Author: Slawomir Sujecki
Publisher: CRC Press
ISBN: 1466561270
Category : Science
Languages : en
Pages : 408

Get Book Here

Book Description
Photonics Modeling and Design delivers a concise introduction to the modeling and design of photonic devices. Assuming a general knowledge of photonics and the operating principles of fibre and semiconductor lasers, this book: Describes the analysis of the light propagation in dielectric media Discusses heat diffusion and carrier transport Applies the presented theory to develop fibre and semiconductor laser models Addresses the propagation of short optical pulses in optical fibres Puts all modeling into practical context with examples of devices currently in development or on the market Providing hands-on guidance in the form of MATLAB® scripts, tips, and other downloadable content, Photonics Modeling and Design is written for students and professionals interested in modeling photonic devices either for gaining a deeper understanding of the operation or to optimize the design.

Modeling of Photonic Devices

Modeling of Photonic Devices PDF Author: Vittorio M. N. Passaro
Publisher:
ISBN: 9781604569803
Category : Optoelectronic devices
Languages : en
Pages : 0

Get Book Here

Book Description
The purpose of this book is to show the main techniques and strategies needed to design and model simple and complex photonic devices, which can be used for telecommunications, signal processing or sensing applications. In fact, the modelling approaches and techniques of photonic devices are not yet well standardised. In many fields, in particular Silicon Photonics or Polymer Photonics, a few experimental devices have been presented in literature, but their fundamental modelling and design aspects are still completely or partially ignored. The high-quality research and review chapters are written by the members of the Photonics Research Group.

Finite Element Modeling Methods for Photonics

Finite Element Modeling Methods for Photonics PDF Author: B. M. Azizur Rahman
Publisher: Artech House
ISBN: 1608075311
Category : Technology & Engineering
Languages : en
Pages : 265

Get Book Here

Book Description
The term photonics can be used loosely to refer to a vast array of components, devices, and technologies that in some way involve manipulation of light. One of the most powerful numerical approaches available to engineers developing photonic components and devices is the Finite Element Method (FEM), which can be used to model and simulate such components/devices and analyze how they will behave in response to various outside influences. This resource provides a comprehensive description of the formulation and applications of FEM in photonics applications ranging from telecommunications, astronomy, and sensing, to chemistry, imaging, and biomedical R&D. This book emphasizes practical, problem-solving applications and includes real-world examples to assist readers in understanding how mathematical concepts translate to computer code for finite element-based methods applicable to a range of photonic structures. In addition, this is the perfect support to anyone using the COMSOL Multiphysics© RF Module.

Photonic Crystals

Photonic Crystals PDF Author: Jean-Michel Lourtioz
Publisher: Springer Science & Business Media
ISBN: 3540783474
Category : Science
Languages : en
Pages : 514

Get Book Here

Book Description
This book provides the theoretical background required for modelling photonic crystals and their optical properties, while presenting the large variety of devices where photonic crystals have found application. As such, it aims at building bridges between optics, electromagnetism and solid state physics. This second edition includes the most recent developments of two-dimensional photonic crystal devices, as well as some of the last results reported on metamaterials.

Silicon Photonics Design

Silicon Photonics Design PDF Author: Lukas Chrostowski
Publisher: Cambridge University Press
ISBN: 1107085454
Category : Science
Languages : en
Pages : 439

Get Book Here

Book Description
This hands-on introduction to silicon photonics engineering equips students with everything they need to begin creating foundry-ready designs.

Computational Photonics

Computational Photonics PDF Author: Marek S. Wartak
Publisher: Cambridge University Press
ISBN: 1139851403
Category : Science
Languages : en
Pages : 467

Get Book Here

Book Description
A comprehensive manual on the efficient modeling and analysis of photonic devices through building numerical codes, this book provides graduate students and researchers with the theoretical background and MATLAB programs necessary for them to start their own numerical experiments. Beginning by summarizing topics in optics and electromagnetism, the book discusses optical planar waveguides, linear optical fiber, the propagation of linear pulses, laser diodes, optical amplifiers, optical receivers, finite-difference time-domain method, beam propagation method and some wavelength division devices, solitons, solar cells and metamaterials. Assuming only a basic knowledge of physics and numerical methods, the book is ideal for engineers, physicists and practising scientists. It concentrates on the operating principles of optical devices, as well as the models and numerical methods used to describe them.

Photonic Crystals

Photonic Crystals PDF Author: Igor A. Sukhoivanov
Publisher: Springer
ISBN: 364202646X
Category : Science
Languages : en
Pages : 254

Get Book Here

Book Description
The great interest in photonic crystals and their applications in the last 15 years is being expressed in the publishing of a large number of monographs, collections, textbooks and tutorials, where existing knowledge concerning - eration principles of photonic crystal devices and microstructured ?bers, their mathematicaldescription,well-knownandnovelapplicationsofsuchtechno- gies in photonics and optical communications are presented. They challenges authors of new books to cover the gaps still existing in the literature and highlight and popularize of already known material in a new and original manner. Authorsofthisbookbelievethatthenextsteptowardswideapplicationof photoniccrystalsisthesolutionofmanypracticalproblemsofdesignandc- putation of the speci?c photonic crystal-based devices aimed at the speci?c technicalapplication.Inordertomakethisstep,itisnecessarytoincreasethe number of practitioners who can solve such problems independently. The aim of this book is to extend the group of researchers, developers and students, who could practically use the knowledge on the physics of photonic crystals together with the knowledge and skills of independent calculation of basic characteristics of photonic crystals and modeling of various elements of - tegrated circuits and optical communication systems created on the basis of photonic crystals. The book is intended for quali?ed readers, specialists in the ?eld of optics and photonics, students of higher courses, master degree students and PhD students. As an introduction to the snopest, the book contains the basics of wave optics and radiation propagation in simple guiding media such as planar waveguides and step-index ?bers.

Numerical Methods in Photonics

Numerical Methods in Photonics PDF Author: Andrei V. Lavrinenko
Publisher: CRC Press
ISBN: 1466563893
Category : Science
Languages : en
Pages : 356

Get Book Here

Book Description
Simulation and modeling using numerical methods is one of the key instruments in any scientific work. In the field of photonics, a wide range of numerical methods are used for studying both fundamental optics and applications such as design, development, and optimization of photonic components. Modeling is key for developing improved photonic devices and reducing development time and cost. Choosing the appropriate computational method for a photonics modeling problem requires a clear understanding of the pros and cons of the available numerical methods. Numerical Methods in Photonics presents six of the most frequently used methods: FDTD, FDFD, 1+1D nonlinear propagation, modal method, Green’s function, and FEM. After an introductory chapter outlining the basics of Maxwell’s equations, the book includes self-contained chapters that focus on each of the methods. Each method is accompanied by a review of the mathematical principles in which it is based, along with sample scripts, illustrative examples of characteristic problem solving, and exercises. MATLAB® is used throughout the text. This book provides a solid basis to practice writing your own codes. The theoretical formulation is complemented by sets of exercises, which allow you to grasp the essence of the modeling tools.

Handbook of Optoelectronic Device Modeling and Simulation

Handbook of Optoelectronic Device Modeling and Simulation PDF Author: Joachim Piprek
Publisher: CRC Press
ISBN: 1498749577
Category : Science
Languages : en
Pages : 887

Get Book Here

Book Description
Provides a comprehensive survey of fundamental concepts and methods for optoelectronic device modeling and simulation. Gives a broad overview of concepts with concise explanations illustrated by real results. Compares different levels of modeling, from simple analytical models to complex numerical models. Discusses practical methods of model validation. Includes an overview of numerical techniques.

Electromagnetic Theory and Applications for Photonic Crystals

Electromagnetic Theory and Applications for Photonic Crystals PDF Author: Kiyotoshi Yasumoto
Publisher: CRC Press
ISBN: 1420026623
Category : Science
Languages : en
Pages : 466

Get Book Here

Book Description
Photonic technology promises much faster computing, massive parallel processing, and an evolutionary step in the digital age. The search continues for devices that will enable this paradigm, and these devices will be based on photonic crystals. Modeling is a key process in developing crystals with the desired characteristics and performance, and Electromagnetic Theory and Applications for Photonic Crystals provides the electromagnetic-theoretical models that can be effectively applied to modeling photonic crystals and related optical devices. The book supplies eight self-contained chapters that detail various analytical, numerical, and computational approaches to the modeling of scattering and guiding problems. For each model, the chapter begins with a brief introduction, detailed formulations of periodic structures and photonic crystals, and practical applications to photonic crystal devices. Expert contributors discuss the scattering matrix method, multipole theory of scattering and propagation, model of layered periodic arrays for photonic crystals, the multiple multipole program, the mode-matching method for periodic metallic structures, the method of lines, the finite-difference frequency-domain technique, and the finite-difference time-domain technique. Based on original research and application efforts, Electromagnetic Theory and Applications for Photonic Crystals supplies a broad array of practical tools for analyzing and designing devices that will form the basis for a new age in computing.