Modeling Dynamical Systems with Recurrent Neural Networks

Modeling Dynamical Systems with Recurrent Neural Networks PDF Author: Fu-Sheng Tsung
Publisher:
ISBN:
Category : Neural networks (Computer science)
Languages : en
Pages : 264

Get Book Here

Book Description

Modeling Dynamical Systems with Recurrent Neural Networks

Modeling Dynamical Systems with Recurrent Neural Networks PDF Author: Fu-Sheng Tsung
Publisher:
ISBN:
Category : Neural networks (Computer science)
Languages : en
Pages : 264

Get Book Here

Book Description


A Field Guide to Dynamical Recurrent Networks

A Field Guide to Dynamical Recurrent Networks PDF Author: John F. Kolen
Publisher: John Wiley & Sons
ISBN: 9780780353695
Category : Technology & Engineering
Languages : en
Pages : 458

Get Book Here

Book Description
Acquire the tools for understanding new architectures and algorithms of dynamical recurrent networks (DRNs) from this valuable field guide, which documents recent forays into artificial intelligence, control theory, and connectionism. This unbiased introduction to DRNs and their application to time-series problems (such as classification and prediction) provides a comprehensive overview of the recent explosion of leading research in this prolific field. A Field Guide to Dynamical Recurrent Networks emphasizes the issues driving the development of this class of network structures. It provides a solid foundation in DRN systems theory and practice using consistent notation and terminology. Theoretical presentations are supplemented with applications ranging from cognitive modeling to financial forecasting. A Field Guide to Dynamical Recurrent Networks will enable engineers, research scientists, academics, and graduate students to apply DRNs to various real-world problems and learn about different areas of active research. It provides both state-of-the-art information and a road map to the future of cutting-edge dynamical recurrent networks.

Neural Network Modeling and Identification of Dynamical Systems

Neural Network Modeling and Identification of Dynamical Systems PDF Author: Yury Tiumentsev
Publisher: Academic Press
ISBN: 0128154306
Category : Science
Languages : en
Pages : 334

Get Book Here

Book Description
Neural Network Modeling and Identification of Dynamical Systems presents a new approach on how to obtain the adaptive neural network models for complex systems that are typically found in real-world applications. The book introduces the theoretical knowledge available for the modeled system into the purely empirical black box model, thereby converting the model to the gray box category. This approach significantly reduces the dimension of the resulting model and the required size of the training set. This book offers solutions for identifying controlled dynamical systems, as well as identifying characteristics of such systems, in particular, the aerodynamic characteristics of aircraft. - Covers both types of dynamic neural networks (black box and gray box) including their structure, synthesis and training - Offers application examples of dynamic neural network technologies, primarily related to aircraft - Provides an overview of recent achievements and future needs in this area

Neural Networks: Computational Models and Applications

Neural Networks: Computational Models and Applications PDF Author: Huajin Tang
Publisher: Springer Science & Business Media
ISBN: 3540692258
Category : Computers
Languages : en
Pages : 310

Get Book Here

Book Description
Neural Networks: Computational Models and Applications presents important theoretical and practical issues in neural networks, including the learning algorithms of feed-forward neural networks, various dynamical properties of recurrent neural networks, winner-take-all networks and their applications in broad manifolds of computational intelligence: pattern recognition, uniform approximation, constrained optimization, NP-hard problems, and image segmentation. The book offers a compact, insightful understanding of the broad and rapidly growing neural networks domain.

Neural and Automata Networks

Neural and Automata Networks PDF Author: E. Goles
Publisher: Springer Science & Business Media
ISBN: 9400905297
Category : Computers
Languages : en
Pages : 259

Get Book Here

Book Description
"Et moi ..., si j'avait Sll comment en revenir. One sennce mathematics has rendered the human race. It has put common sense back je n'y serais point alle.' Jules Verne whe", it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be smse'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'!ltre of this series

Neural Networks with R

Neural Networks with R PDF Author: Giuseppe Ciaburro
Publisher: Packt Publishing Ltd
ISBN: 1788399412
Category : Computers
Languages : en
Pages : 264

Get Book Here

Book Description
Uncover the power of artificial neural networks by implementing them through R code. About This Book Develop a strong background in neural networks with R, to implement them in your applications Build smart systems using the power of deep learning Real-world case studies to illustrate the power of neural network models Who This Book Is For This book is intended for anyone who has a statistical background with knowledge in R and wants to work with neural networks to get better results from complex data. If you are interested in artificial intelligence and deep learning and you want to level up, then this book is what you need! What You Will Learn Set up R packages for neural networks and deep learning Understand the core concepts of artificial neural networks Understand neurons, perceptrons, bias, weights, and activation functions Implement supervised and unsupervised machine learning in R for neural networks Predict and classify data automatically using neural networks Evaluate and fine-tune the models you build. In Detail Neural networks are one of the most fascinating machine learning models for solving complex computational problems efficiently. Neural networks are used to solve wide range of problems in different areas of AI and machine learning. This book explains the niche aspects of neural networking and provides you with foundation to get started with advanced topics. The book begins with neural network design using the neural net package, then you'll build a solid foundation knowledge of how a neural network learns from data, and the principles behind it. This book covers various types of neural network including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but will also explore generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases. By the end of this book, you will learn to implement neural network models in your applications with the help of practical examples in the book. Style and approach A step-by-step guide filled with real-world practical examples.

Convergence Analysis of Recurrent Neural Networks

Convergence Analysis of Recurrent Neural Networks PDF Author: Zhang Yi
Publisher: Springer Science & Business Media
ISBN: 1475738196
Category : Computers
Languages : en
Pages : 244

Get Book Here

Book Description
Since the outstanding and pioneering research work of Hopfield on recurrent neural networks (RNNs) in the early 80s of the last century, neural networks have rekindled strong interests in scientists and researchers. Recent years have recorded a remarkable advance in research and development work on RNNs, both in theoretical research as weIl as actual applications. The field of RNNs is now transforming into a complete and independent subject. From theory to application, from software to hardware, new and exciting results are emerging day after day, reflecting the keen interest RNNs have instilled in everyone, from researchers to practitioners. RNNs contain feedback connections among the neurons, a phenomenon which has led rather naturally to RNNs being regarded as dynamical systems. RNNs can be described by continuous time differential systems, discrete time systems, or functional differential systems, and more generally, in terms of non linear systems. Thus, RNNs have to their disposal, a huge set of mathematical tools relating to dynamical system theory which has tumed out to be very useful in enabling a rigorous analysis of RNNs.

Recurrent Neural Networks for Prediction

Recurrent Neural Networks for Prediction PDF Author: Danilo Mandic
Publisher:
ISBN:
Category :
Languages : en
Pages : 297

Get Book Here

Book Description
New technologies in engineering, physics and biomedicine are demanding increasingly complex methods of digital signal processing. By presenting the latest research work the authors demonstrate how real-time recurrent neural networks (RNNs) can be implemented to expand the range of traditional signal processing techniques and to help combat the problem of prediction. Within this text neural networks are considered as massively interconnected nonlinear adaptive filters.? Analyses the relationships between RNNs and various nonlinear models and filters, and introduces spatio-temporal architectur.

Adaptive Control with Recurrent High-order Neural Networks

Adaptive Control with Recurrent High-order Neural Networks PDF Author: George A. Rovithakis
Publisher: Springer Science & Business Media
ISBN: 1447107853
Category : Computers
Languages : en
Pages : 203

Get Book Here

Book Description
The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies ... , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Neural networks is one of those areas where an initial burst of enthusiasm and optimism leads to an explosion of papers in the journals and many presentations at conferences but it is only in the last decade that significant theoretical work on stability, convergence and robustness for the use of neural networks in control systems has been tackled. George Rovithakis and Manolis Christodoulou have been interested in these theoretical problems and in the practical aspects of neural network applications to industrial problems. This very welcome addition to the Advances in Industrial Control series provides a succinct report of their research. The neural network model at the core of their work is the Recurrent High Order Neural Network (RHONN) and a complete theoretical and simulation development is presented. Different readers will find different aspects of the development of interest. The last chapter of the monograph discusses the problem of manufacturing or production process scheduling.

Recurrent Neural Networks for Short-Term Load Forecasting

Recurrent Neural Networks for Short-Term Load Forecasting PDF Author: Filippo Maria Bianchi
Publisher: Springer
ISBN: 3319703382
Category : Computers
Languages : en
Pages : 74

Get Book Here

Book Description
The key component in forecasting demand and consumption of resources in a supply network is an accurate prediction of real-valued time series. Indeed, both service interruptions and resource waste can be reduced with the implementation of an effective forecasting system. Significant research has thus been devoted to the design and development of methodologies for short term load forecasting over the past decades. A class of mathematical models, called Recurrent Neural Networks, are nowadays gaining renewed interest among researchers and they are replacing many practical implementations of the forecasting systems, previously based on static methods. Despite the undeniable expressive power of these architectures, their recurrent nature complicates their understanding and poses challenges in the training procedures. Recently, new important families of recurrent architectures have emerged and their applicability in the context of load forecasting has not been investigated completely yet. This work performs a comparative study on the problem of Short-Term Load Forecast, by using different classes of state-of-the-art Recurrent Neural Networks. The authors test the reviewed models first on controlled synthetic tasks and then on different real datasets, covering important practical cases of study. The text also provides a general overview of the most important architectures and defines guidelines for configuring the recurrent networks to predict real-valued time series.