Author: Josef Málek
Publisher: Springer Nature
ISBN: 3030880842
Category : Mathematics
Languages : en
Pages : 281
Book Description
The investigation of the role of mechanical and mechano-chemical interactions in cellular processes and tissue development is a rapidly growing research field in the life sciences and in biomedical engineering. Quantitative understanding of this important area in the study of biological systems requires the development of adequate mathematical models for the simulation of the evolution of these systems in space and time. Since expertise in various fields is necessary, this calls for a multidisciplinary approach. This edited volume connects basic physical, biological, and physiological concepts to methods for the mathematical modeling of various materials by pursuing a multiscale approach, from subcellular to organ and system level. Written by active researchers, each chapter provides a detailed introduction to a given field, illustrates various approaches to creating models, and explores recent advances and future research perspectives. Topics covered include molecular dynamics simulations of lipid membranes, phenomenological continuum mechanics of tissue growth, and translational cardiovascular modeling. Modeling Biomaterials will be a valuable resource for both non-specialists and experienced researchers from various domains of science, such as applied mathematics, biophysics, computational physiology, and medicine.
Modeling Biomaterials
Author: Josef Málek
Publisher: Springer Nature
ISBN: 3030880842
Category : Mathematics
Languages : en
Pages : 281
Book Description
The investigation of the role of mechanical and mechano-chemical interactions in cellular processes and tissue development is a rapidly growing research field in the life sciences and in biomedical engineering. Quantitative understanding of this important area in the study of biological systems requires the development of adequate mathematical models for the simulation of the evolution of these systems in space and time. Since expertise in various fields is necessary, this calls for a multidisciplinary approach. This edited volume connects basic physical, biological, and physiological concepts to methods for the mathematical modeling of various materials by pursuing a multiscale approach, from subcellular to organ and system level. Written by active researchers, each chapter provides a detailed introduction to a given field, illustrates various approaches to creating models, and explores recent advances and future research perspectives. Topics covered include molecular dynamics simulations of lipid membranes, phenomenological continuum mechanics of tissue growth, and translational cardiovascular modeling. Modeling Biomaterials will be a valuable resource for both non-specialists and experienced researchers from various domains of science, such as applied mathematics, biophysics, computational physiology, and medicine.
Publisher: Springer Nature
ISBN: 3030880842
Category : Mathematics
Languages : en
Pages : 281
Book Description
The investigation of the role of mechanical and mechano-chemical interactions in cellular processes and tissue development is a rapidly growing research field in the life sciences and in biomedical engineering. Quantitative understanding of this important area in the study of biological systems requires the development of adequate mathematical models for the simulation of the evolution of these systems in space and time. Since expertise in various fields is necessary, this calls for a multidisciplinary approach. This edited volume connects basic physical, biological, and physiological concepts to methods for the mathematical modeling of various materials by pursuing a multiscale approach, from subcellular to organ and system level. Written by active researchers, each chapter provides a detailed introduction to a given field, illustrates various approaches to creating models, and explores recent advances and future research perspectives. Topics covered include molecular dynamics simulations of lipid membranes, phenomenological continuum mechanics of tissue growth, and translational cardiovascular modeling. Modeling Biomaterials will be a valuable resource for both non-specialists and experienced researchers from various domains of science, such as applied mathematics, biophysics, computational physiology, and medicine.
Biofabrication and 3D Tissue Modeling
Author: Dong-Woo Cho
Publisher: Royal Society of Chemistry
ISBN: 1788011988
Category : Medical
Languages : en
Pages : 369
Book Description
3D tissue modelling is an emerging field used for the investigation of disease mechanisms and drug development. Integrating physics, chemistry, materials science, and stem cell and biomedical engineering, this book provides a complete foundation to this exciting, and interdisciplinary field.
Publisher: Royal Society of Chemistry
ISBN: 1788011988
Category : Medical
Languages : en
Pages : 369
Book Description
3D tissue modelling is an emerging field used for the investigation of disease mechanisms and drug development. Integrating physics, chemistry, materials science, and stem cell and biomedical engineering, this book provides a complete foundation to this exciting, and interdisciplinary field.
Biomaterials for 3D Tumor Modeling
Author: Subhas C. Kundu
Publisher: Elsevier
ISBN: 012818129X
Category : Technology & Engineering
Languages : en
Pages : 773
Book Description
Biomaterials for 3D Tumor Modeling reviews the fundamentals and most relevant areas of the latest advances of research of 3D cancer models, focusing on biomaterials science, tissue engineering, drug delivery and screening aspects. The book reviews advanced fundamental topics, including the causes of cancer, existing cancer models, angiogenesis and inflammation during cancer progression, and metastasis in 3D biomaterials. Then, the most relevant biomaterials are reviewed, including methods for engineering and fabrication of biomaterials. 3D models for key biological systems and types of cancer are also discussed, including lung, liver, oral, prostate, pancreatic, ovarian, bone and pediatric cancer. This book is suitable for those working in the disciplines of materials science, biochemistry, genetics, molecular biology, drug delivery and regenerative medicine. - Reviews key biomaterials topics, including synthetic biomaterials, hydrogels, e-spun materials and nanoparticles - Provides a comprehensive overview of 3D cancer models for key biological systems and cancer types - Includes an overview of advanced fundamental concepts for an interdisciplinary audience in materials science, biochemistry, regenerative medicine and drug delivery
Publisher: Elsevier
ISBN: 012818129X
Category : Technology & Engineering
Languages : en
Pages : 773
Book Description
Biomaterials for 3D Tumor Modeling reviews the fundamentals and most relevant areas of the latest advances of research of 3D cancer models, focusing on biomaterials science, tissue engineering, drug delivery and screening aspects. The book reviews advanced fundamental topics, including the causes of cancer, existing cancer models, angiogenesis and inflammation during cancer progression, and metastasis in 3D biomaterials. Then, the most relevant biomaterials are reviewed, including methods for engineering and fabrication of biomaterials. 3D models for key biological systems and types of cancer are also discussed, including lung, liver, oral, prostate, pancreatic, ovarian, bone and pediatric cancer. This book is suitable for those working in the disciplines of materials science, biochemistry, genetics, molecular biology, drug delivery and regenerative medicine. - Reviews key biomaterials topics, including synthetic biomaterials, hydrogels, e-spun materials and nanoparticles - Provides a comprehensive overview of 3D cancer models for key biological systems and cancer types - Includes an overview of advanced fundamental concepts for an interdisciplinary audience in materials science, biochemistry, regenerative medicine and drug delivery
Introduction to Integrative Engineering
Author: Guigen Zhang
Publisher: CRC Press
ISBN: 1315388456
Category : Health & Fitness
Languages : en
Pages : 424
Book Description
This textbook is designed for an introductory course at undergraduate and graduate levels for bioengineering students. It provides a systematic way of examining bioengineering problems in a multidisciplinary computational approach. The book introduces basic concepts of multidiscipline-based computational modeling methods, provides detailed step-by-step techniques to build a model with consideration of underlying multiphysics, and discusses many important aspects of a modeling approach including results interpretation, validation, and assessment.
Publisher: CRC Press
ISBN: 1315388456
Category : Health & Fitness
Languages : en
Pages : 424
Book Description
This textbook is designed for an introductory course at undergraduate and graduate levels for bioengineering students. It provides a systematic way of examining bioengineering problems in a multidisciplinary computational approach. The book introduces basic concepts of multidiscipline-based computational modeling methods, provides detailed step-by-step techniques to build a model with consideration of underlying multiphysics, and discusses many important aspects of a modeling approach including results interpretation, validation, and assessment.
Dental Biomaterials
Author: R V Curtis
Publisher: Elsevier
ISBN: 1845694244
Category : Technology & Engineering
Languages : en
Pages : 529
Book Description
Dental Biomaterials: Imaging, Testing and Modelling reviews the materials used in this important area, their performance and how such performance can be measured and optimised. Chapters review optical and electron microscopy imaging techniques for dental biomaterial interfaces. Specific materials such as dental cements, fibre-reinforced composites, metals and alloys are discussed. There is an analysis of stresses, fracture, wear and ageing in dental biomaterials as well as an evaluation of the performance of dental adhesives and resin-dentin bonds. Chapters also review ways of assessing the performance of dental handpieces, crowns, implants and prosthesies. The book also reviews the use of computer models in such areas as bond strength and shape optimisation of dental restorations.With its distinguished editors and team of experienced contributors DDental Biomaterials: Imaging, Testing and Modelling researchers, materials scientists, engineers and dental practitioners with an essential guide to the use and performance of dental biomaterials. - An essential guide to the use and performance of dental biomaterials - Reviews optical and electron microscopy imaging techniques for dental biomaterial interfaces - Analyses stresses, fracture, wear and ageing in dental biomaterials and evaluates the performance of dental adhesives and resin-dentin bonds
Publisher: Elsevier
ISBN: 1845694244
Category : Technology & Engineering
Languages : en
Pages : 529
Book Description
Dental Biomaterials: Imaging, Testing and Modelling reviews the materials used in this important area, their performance and how such performance can be measured and optimised. Chapters review optical and electron microscopy imaging techniques for dental biomaterial interfaces. Specific materials such as dental cements, fibre-reinforced composites, metals and alloys are discussed. There is an analysis of stresses, fracture, wear and ageing in dental biomaterials as well as an evaluation of the performance of dental adhesives and resin-dentin bonds. Chapters also review ways of assessing the performance of dental handpieces, crowns, implants and prosthesies. The book also reviews the use of computer models in such areas as bond strength and shape optimisation of dental restorations.With its distinguished editors and team of experienced contributors DDental Biomaterials: Imaging, Testing and Modelling researchers, materials scientists, engineers and dental practitioners with an essential guide to the use and performance of dental biomaterials. - An essential guide to the use and performance of dental biomaterials - Reviews optical and electron microscopy imaging techniques for dental biomaterial interfaces - Analyses stresses, fracture, wear and ageing in dental biomaterials and evaluates the performance of dental adhesives and resin-dentin bonds
Mathematical Models and Computer Simulations for Biomedical Applications
Author: Gabriella Bretti
Publisher: Springer Nature
ISBN: 3031357159
Category : Mathematics
Languages : en
Pages : 261
Book Description
Mathematical modelling and computer simulations are playing a crucial role in the solution of the complex problems arising in the field of biomedical sciences and provide a support to clinical and experimental practices in an interdisciplinary framework. Indeed, the development of mathematical models and efficient numerical simulation tools is of key importance when dealing with such applications. Moreover, since the parameters in biomedical models have peculiar scientific interpretations and their values are often unknown, accurate estimation techniques need to be developed for parameter identification against the measured data of observed phenomena. In the light of the new challenges brought by the biomedical applications, computational mathematics paves the way for the validation of the mathematical models and the investigation of control problems. The volume hosts high-quality selected contributions containing original research results as well as comprehensive papers and survey articles including prospective discussion focusing on some topical biomedical problems. It is addressed, but not limited to: research institutes, academia, and pharmaceutical industries.
Publisher: Springer Nature
ISBN: 3031357159
Category : Mathematics
Languages : en
Pages : 261
Book Description
Mathematical modelling and computer simulations are playing a crucial role in the solution of the complex problems arising in the field of biomedical sciences and provide a support to clinical and experimental practices in an interdisciplinary framework. Indeed, the development of mathematical models and efficient numerical simulation tools is of key importance when dealing with such applications. Moreover, since the parameters in biomedical models have peculiar scientific interpretations and their values are often unknown, accurate estimation techniques need to be developed for parameter identification against the measured data of observed phenomena. In the light of the new challenges brought by the biomedical applications, computational mathematics paves the way for the validation of the mathematical models and the investigation of control problems. The volume hosts high-quality selected contributions containing original research results as well as comprehensive papers and survey articles including prospective discussion focusing on some topical biomedical problems. It is addressed, but not limited to: research institutes, academia, and pharmaceutical industries.
Biologically Responsive Biomaterials for Tissue Engineering
Author: Iulian Vasile Antoniac
Publisher: Springer Science & Business Media
ISBN: 146144327X
Category : Technology & Engineering
Languages : en
Pages : 261
Book Description
Developments in the area of biomaterials, bionanotechnology, tissue engineering, and medical devices are becoming the core of health care. Almost all medical specialties involve the use of biomaterials, and research plays a key role in the development of new and improved treatment modalities. This volume focuses on several current trends in tissue engineering, remodelling and regeneration. Leading researchers describe the use of nanomaterials to create new functionalities when interfaced with biological molecules or structures. In addition to coverage of basic science and engineering aspects, a range of applications in bionanotechnology are presented, including diagnostic devices, contrast agents, analytical tools, physical therapy applications, and vehicles for targeted drug delivery. The use of polymers, alloys, and composites, or a combination of these, for biomaterials applications in orthopaedics is also explored. These contributions represent essential reading for the biomaterials and biomedical engineering communities, and can serve as instructional course lectures targeted at graduate and post-graduate students.
Publisher: Springer Science & Business Media
ISBN: 146144327X
Category : Technology & Engineering
Languages : en
Pages : 261
Book Description
Developments in the area of biomaterials, bionanotechnology, tissue engineering, and medical devices are becoming the core of health care. Almost all medical specialties involve the use of biomaterials, and research plays a key role in the development of new and improved treatment modalities. This volume focuses on several current trends in tissue engineering, remodelling and regeneration. Leading researchers describe the use of nanomaterials to create new functionalities when interfaced with biological molecules or structures. In addition to coverage of basic science and engineering aspects, a range of applications in bionanotechnology are presented, including diagnostic devices, contrast agents, analytical tools, physical therapy applications, and vehicles for targeted drug delivery. The use of polymers, alloys, and composites, or a combination of these, for biomaterials applications in orthopaedics is also explored. These contributions represent essential reading for the biomaterials and biomedical engineering communities, and can serve as instructional course lectures targeted at graduate and post-graduate students.
Silk-Based Biomaterials for Tissue Engineering, Regenerative and Precision Medicine
Author: Subhas C. Kundu
Publisher: Elsevier
ISBN: 0323960162
Category : Technology & Engineering
Languages : en
Pages : 908
Book Description
Silk-based Biomaterials for Tissue Engineering, Regenerative and Precision Medicine, Second Edition is a must-have reference, providing comprehensive coverage of silk-based biomaterials and their importance in translational uses and biomedicine. This new edition considers the progress made in the past eight years, featuring many new chapters, including a discussion of cutting-edge fabrication methods and techniques, new and improved blends/composites, and an expanded range of applications in tissue engineering, regenerative and precision medicine. The book holistically reviews the types, structure and properties, processing methods, and specific biomedical applications for silk-based biomaterials. This will be a vital resource for materials and tissue engineering scientists, R&D departments in industry and academia, and academics interested in biomaterials, regenerative, and precision medicine. - Covers all key silk biomaterial types, including mulberry, Bombyx mori and nonmulberry/wild silk protein fibroins, sericins and spider silk, as well as their composite blends and various structures and scaffold platforms - Describes the cutting-edge processing techniques for each silk type, from traditional to nonconventional methods, such as using ionic liquids and engineering nanofibers and other biomedical matrices - Explores a range of applications in tissue engineering and regenerative and precision medicine, including bioprinting, bioelectronics and medical devices
Publisher: Elsevier
ISBN: 0323960162
Category : Technology & Engineering
Languages : en
Pages : 908
Book Description
Silk-based Biomaterials for Tissue Engineering, Regenerative and Precision Medicine, Second Edition is a must-have reference, providing comprehensive coverage of silk-based biomaterials and their importance in translational uses and biomedicine. This new edition considers the progress made in the past eight years, featuring many new chapters, including a discussion of cutting-edge fabrication methods and techniques, new and improved blends/composites, and an expanded range of applications in tissue engineering, regenerative and precision medicine. The book holistically reviews the types, structure and properties, processing methods, and specific biomedical applications for silk-based biomaterials. This will be a vital resource for materials and tissue engineering scientists, R&D departments in industry and academia, and academics interested in biomaterials, regenerative, and precision medicine. - Covers all key silk biomaterial types, including mulberry, Bombyx mori and nonmulberry/wild silk protein fibroins, sericins and spider silk, as well as their composite blends and various structures and scaffold platforms - Describes the cutting-edge processing techniques for each silk type, from traditional to nonconventional methods, such as using ionic liquids and engineering nanofibers and other biomedical matrices - Explores a range of applications in tissue engineering and regenerative and precision medicine, including bioprinting, bioelectronics and medical devices
Biomaterials- and Microfluidics-Based Tissue Engineered 3D Models
Author: J. Miguel Oliveira
Publisher: Springer Nature
ISBN: 3030365883
Category : Medical
Languages : en
Pages : 176
Book Description
This contributed volume reviews the latest advances on relevant 3D tissue engineered in vitro models of disease making use of biomaterials and microfluidics. The main focus of this book is on advanced biomaterials and microfluidics technologies that have been used in in vitro mimetic 3D models of human diseases and show great promise in revolutionizing personalized medicine. Readers will discover important topics involving biomaterials and microfluidics design, advanced processing techniques, and development and validation of organ- and body-on-a-chip models for bone, liver, and cancer research. An in depth discussion of microfabrication methods for microfluidics development is also provided. This work is edited by two truly multidisciplinary scientists and includes important contributions from well-known experts in their fields. The work is written for both early stage and experienced researchers, and well-established scientists enrolled in the fields of biomaterials, microfluidics, and tissue engineering, and is especially suited to those who wish to become acquainted with the principles and latest developments of in vitro models of diseases, such as professionals working in pharma, medicine, and engineering.
Publisher: Springer Nature
ISBN: 3030365883
Category : Medical
Languages : en
Pages : 176
Book Description
This contributed volume reviews the latest advances on relevant 3D tissue engineered in vitro models of disease making use of biomaterials and microfluidics. The main focus of this book is on advanced biomaterials and microfluidics technologies that have been used in in vitro mimetic 3D models of human diseases and show great promise in revolutionizing personalized medicine. Readers will discover important topics involving biomaterials and microfluidics design, advanced processing techniques, and development and validation of organ- and body-on-a-chip models for bone, liver, and cancer research. An in depth discussion of microfabrication methods for microfluidics development is also provided. This work is edited by two truly multidisciplinary scientists and includes important contributions from well-known experts in their fields. The work is written for both early stage and experienced researchers, and well-established scientists enrolled in the fields of biomaterials, microfluidics, and tissue engineering, and is especially suited to those who wish to become acquainted with the principles and latest developments of in vitro models of diseases, such as professionals working in pharma, medicine, and engineering.
Functional Biomaterials
Author: Anuj Kumar
Publisher: CRC Press
ISBN: 1000912086
Category : Medical
Languages : en
Pages : 325
Book Description
Discusses design chemistry, modification, and processing of biomaterials Describes the efficacy of biomaterials at various scales for biological response and drug delivery Demonstrates technological advances from conventional to additive manufacturing Covers future of biofabrication and customized medical devices
Publisher: CRC Press
ISBN: 1000912086
Category : Medical
Languages : en
Pages : 325
Book Description
Discusses design chemistry, modification, and processing of biomaterials Describes the efficacy of biomaterials at various scales for biological response and drug delivery Demonstrates technological advances from conventional to additive manufacturing Covers future of biofabrication and customized medical devices