Author: Chandra Singh
Publisher: John Wiley & Sons
ISBN: 1119847699
Category : Computers
Languages : en
Pages : 421
Book Description
Explore the power of machine learning to revolutionize signal processing and optimization with cutting-edge techniques and practical insights in this outstanding new volume from Scrivener Publishing. Modeling and Optimization of Signals using Machine Learning Techniques is designed for researchers from academia, industries, and R&D organizations worldwide who are passionate about advancing machine learning methods, signal processing theory, data mining, artificial intelligence, and optimization. This book addresses the role of machine learning in transforming vast signal databases from sensor networks, internet services, and communication systems into actionable decision systems. It explores the development of computational solutions and novel models to handle complex real-world signals such as speech, music, biomedical data, and multimedia. Through comprehensive coverage of cutting-edge techniques, this book equips readers with the tools to automate signal processing and analysis, ultimately enhancing the retrieval of valuable information from extensive data storage systems. By providing both theoretical insights and practical guidance, the book serves as a comprehensive resource for researchers, engineers, and practitioners aiming to harness the power of machine learning in signal processing. Whether for the veteran engineer, scientist in the lab, student, or faculty, this groundbreaking new volume is a valuable resource for researchers and other industry professionals interested in the intersection of technology and agriculture.
Modeling and Optimization of Signals Using Machine Learning Techniques
Author: Chandra Singh
Publisher: John Wiley & Sons
ISBN: 1119847699
Category : Computers
Languages : en
Pages : 421
Book Description
Explore the power of machine learning to revolutionize signal processing and optimization with cutting-edge techniques and practical insights in this outstanding new volume from Scrivener Publishing. Modeling and Optimization of Signals using Machine Learning Techniques is designed for researchers from academia, industries, and R&D organizations worldwide who are passionate about advancing machine learning methods, signal processing theory, data mining, artificial intelligence, and optimization. This book addresses the role of machine learning in transforming vast signal databases from sensor networks, internet services, and communication systems into actionable decision systems. It explores the development of computational solutions and novel models to handle complex real-world signals such as speech, music, biomedical data, and multimedia. Through comprehensive coverage of cutting-edge techniques, this book equips readers with the tools to automate signal processing and analysis, ultimately enhancing the retrieval of valuable information from extensive data storage systems. By providing both theoretical insights and practical guidance, the book serves as a comprehensive resource for researchers, engineers, and practitioners aiming to harness the power of machine learning in signal processing. Whether for the veteran engineer, scientist in the lab, student, or faculty, this groundbreaking new volume is a valuable resource for researchers and other industry professionals interested in the intersection of technology and agriculture.
Publisher: John Wiley & Sons
ISBN: 1119847699
Category : Computers
Languages : en
Pages : 421
Book Description
Explore the power of machine learning to revolutionize signal processing and optimization with cutting-edge techniques and practical insights in this outstanding new volume from Scrivener Publishing. Modeling and Optimization of Signals using Machine Learning Techniques is designed for researchers from academia, industries, and R&D organizations worldwide who are passionate about advancing machine learning methods, signal processing theory, data mining, artificial intelligence, and optimization. This book addresses the role of machine learning in transforming vast signal databases from sensor networks, internet services, and communication systems into actionable decision systems. It explores the development of computational solutions and novel models to handle complex real-world signals such as speech, music, biomedical data, and multimedia. Through comprehensive coverage of cutting-edge techniques, this book equips readers with the tools to automate signal processing and analysis, ultimately enhancing the retrieval of valuable information from extensive data storage systems. By providing both theoretical insights and practical guidance, the book serves as a comprehensive resource for researchers, engineers, and practitioners aiming to harness the power of machine learning in signal processing. Whether for the veteran engineer, scientist in the lab, student, or faculty, this groundbreaking new volume is a valuable resource for researchers and other industry professionals interested in the intersection of technology and agriculture.
Mobile Computing and Sustainable Informatics
Author: Subarna Shakya
Publisher: Springer Nature
ISBN: 9819908353
Category : Technology & Engineering
Languages : en
Pages : 792
Book Description
This book gathers selected high-quality research papers presented at International Conference on Mobile Computing and Sustainable Informatics (ICMCSI 2022) organized by Pulchowk Campus, Institute of Engineering, Tribhuvan University, Nepal, during January 11–12, 2023. The book discusses recent developments in mobile communication technologies ranging from mobile edge computing devices to personalized, embedded, and sustainable applications. The book covers vital topics like mobile networks, computing models, algorithms, sustainable models, and advanced informatics that support the symbiosis of mobile computing and sustainable informatics.
Publisher: Springer Nature
ISBN: 9819908353
Category : Technology & Engineering
Languages : en
Pages : 792
Book Description
This book gathers selected high-quality research papers presented at International Conference on Mobile Computing and Sustainable Informatics (ICMCSI 2022) organized by Pulchowk Campus, Institute of Engineering, Tribhuvan University, Nepal, during January 11–12, 2023. The book discusses recent developments in mobile communication technologies ranging from mobile edge computing devices to personalized, embedded, and sustainable applications. The book covers vital topics like mobile networks, computing models, algorithms, sustainable models, and advanced informatics that support the symbiosis of mobile computing and sustainable informatics.
Machine Learning for Algorithmic Trading
Author: Stefan Jansen
Publisher: Packt Publishing Ltd
ISBN: 1839216786
Category : Business & Economics
Languages : en
Pages : 822
Book Description
Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.
Publisher: Packt Publishing Ltd
ISBN: 1839216786
Category : Business & Economics
Languages : en
Pages : 822
Book Description
Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.
Financial Signal Processing and Machine Learning
Author: Ali N. Akansu
Publisher: John Wiley & Sons
ISBN: 1118745639
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches. Key features: Highlights signal processing and machine learning as key approaches to quantitative finance. Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems. Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques. Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.
Publisher: John Wiley & Sons
ISBN: 1118745639
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches. Key features: Highlights signal processing and machine learning as key approaches to quantitative finance. Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems. Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques. Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.
Machine Learning Algorithms for Signal and Image Processing
Author: Suman Lata Tripathi
Publisher: John Wiley & Sons
ISBN: 1119861829
Category : Technology & Engineering
Languages : en
Pages : 516
Book Description
Enables readers to understand the fundamental concepts of machine and deep learning techniques with interactive, real-life applications within signal and image processing Machine Learning Algorithms for Signal and Image Processing aids the reader in designing and developing real-world applications using advances in machine learning to aid and enhance speech signal processing, image processing, computer vision, biomedical signal processing, adaptive filtering, and text processing. It includes signal processing techniques applied for pre-processing, feature extraction, source separation, or data decompositions to achieve machine learning tasks. Written by well-qualified authors and contributed to by a team of experts within the field, the work covers a wide range of important topics, such as: Speech recognition, image reconstruction, object classification and detection, and text processing Healthcare monitoring, biomedical systems, and green energy How various machine and deep learning techniques can improve accuracy, precision rate recall rate, and processing time Real applications and examples, including smart sign language recognition, fake news detection in social media, structural damage prediction, and epileptic seizure detection Professionals within the field of signal and image processing seeking to adapt their work further will find immense value in this easy-to-understand yet extremely comprehensive reference work. It is also a worthy resource for students and researchers in related fields who are looking to thoroughly understand the historical and recent developments that have been made in the field.
Publisher: John Wiley & Sons
ISBN: 1119861829
Category : Technology & Engineering
Languages : en
Pages : 516
Book Description
Enables readers to understand the fundamental concepts of machine and deep learning techniques with interactive, real-life applications within signal and image processing Machine Learning Algorithms for Signal and Image Processing aids the reader in designing and developing real-world applications using advances in machine learning to aid and enhance speech signal processing, image processing, computer vision, biomedical signal processing, adaptive filtering, and text processing. It includes signal processing techniques applied for pre-processing, feature extraction, source separation, or data decompositions to achieve machine learning tasks. Written by well-qualified authors and contributed to by a team of experts within the field, the work covers a wide range of important topics, such as: Speech recognition, image reconstruction, object classification and detection, and text processing Healthcare monitoring, biomedical systems, and green energy How various machine and deep learning techniques can improve accuracy, precision rate recall rate, and processing time Real applications and examples, including smart sign language recognition, fake news detection in social media, structural damage prediction, and epileptic seizure detection Professionals within the field of signal and image processing seeking to adapt their work further will find immense value in this easy-to-understand yet extremely comprehensive reference work. It is also a worthy resource for students and researchers in related fields who are looking to thoroughly understand the historical and recent developments that have been made in the field.
Recent Advances in Machine Learning Techniques and Sensor Applications for Human Emotion, Activity Recognition and Support
Author: Kyandoghere Kyamakya
Publisher: Springer Nature
ISBN: 3031718216
Category :
Languages : en
Pages : 290
Book Description
Publisher: Springer Nature
ISBN: 3031718216
Category :
Languages : en
Pages : 290
Book Description
Advances in Modeling and Management of Urban Water Networks
Author: Alberto Campisano
Publisher: MDPI
ISBN: 3039437895
Category : Technology & Engineering
Languages : en
Pages : 290
Book Description
The Special Issue on Advances in Modeling and Management of Urban Water Networks (UWNs) explores four important topics of research in the context of UWNs: asset management, modeling of demand and hydraulics, energy recovery, and pipe burst identification and leakage reduction. In the first topic, the multi-objective optimization of interventions on the network is presented to find trade-off solutions between costs and efficiency. In the second topic, methodologies are presented to simulate and predict demand and to simulate network behavior in emergency scenarios. In the third topic, a methodology is presented for the multi-objective optimization of pump-as-turbine (PAT) installation sites in transmission mains. In the fourth topic, methodologies for pipe burst identification and leakage reduction are presented. As for the urban drainage systems (UDSs), the two explored topics are asset management, with a system upgrade to reduce flooding, and modeling of flow and water quality, with analyses on the transition from surface to pressurized flow, impact of water use reduction on the operation of UDSs, and sediment transport in pressurized pipes. The Special Issue also includes one paper dealing with the hydraulic modeling of an urban river with a complex cross-section.
Publisher: MDPI
ISBN: 3039437895
Category : Technology & Engineering
Languages : en
Pages : 290
Book Description
The Special Issue on Advances in Modeling and Management of Urban Water Networks (UWNs) explores four important topics of research in the context of UWNs: asset management, modeling of demand and hydraulics, energy recovery, and pipe burst identification and leakage reduction. In the first topic, the multi-objective optimization of interventions on the network is presented to find trade-off solutions between costs and efficiency. In the second topic, methodologies are presented to simulate and predict demand and to simulate network behavior in emergency scenarios. In the third topic, a methodology is presented for the multi-objective optimization of pump-as-turbine (PAT) installation sites in transmission mains. In the fourth topic, methodologies for pipe burst identification and leakage reduction are presented. As for the urban drainage systems (UDSs), the two explored topics are asset management, with a system upgrade to reduce flooding, and modeling of flow and water quality, with analyses on the transition from surface to pressurized flow, impact of water use reduction on the operation of UDSs, and sediment transport in pressurized pipes. The Special Issue also includes one paper dealing with the hydraulic modeling of an urban river with a complex cross-section.
A Signal Processing Perspective on Financial Engineering
Author: Yiyong Feng
Publisher:
ISBN: 9781680831191
Category : Adaptive signal processing
Languages : en
Pages : 231
Book Description
Financial engineering and electrical engineering are seemingly different areas that share strong underlying connections. Both areas rely on statistical analysis and modeling of systems; either modeling the financial markets or modeling wireless communication channels. Having a model of reality allows us to make predictions and to optimize the strategies. It is as important to optimize our investment strategies in a financial market as it is to optimize the signal transmitted by an antenna in a wireless link. This monograph provides a survey of financial engineering from a signal processing perspective, that is, it reviews financial modeling, the design of quantitative investment strategies, and order execution with comparison to seemingly different problems in signal processing and communication systems, such as signal modeling, filter/beamforming design, network scheduling, and power allocation.
Publisher:
ISBN: 9781680831191
Category : Adaptive signal processing
Languages : en
Pages : 231
Book Description
Financial engineering and electrical engineering are seemingly different areas that share strong underlying connections. Both areas rely on statistical analysis and modeling of systems; either modeling the financial markets or modeling wireless communication channels. Having a model of reality allows us to make predictions and to optimize the strategies. It is as important to optimize our investment strategies in a financial market as it is to optimize the signal transmitted by an antenna in a wireless link. This monograph provides a survey of financial engineering from a signal processing perspective, that is, it reviews financial modeling, the design of quantitative investment strategies, and order execution with comparison to seemingly different problems in signal processing and communication systems, such as signal modeling, filter/beamforming design, network scheduling, and power allocation.
Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques
Author: Abdulhamit Subasi
Publisher: Academic Press
ISBN: 0128176733
Category : Medical
Languages : en
Pages : 458
Book Description
Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques: A MATLAB Based Approach presents how machine learning and biomedical signal processing methods can be used in biomedical signal analysis. Different machine learning applications in biomedical signal analysis, including those for electrocardiogram, electroencephalogram and electromyogram are described in a practical and comprehensive way, helping readers with limited knowledge. Sections cover biomedical signals and machine learning techniques, biomedical signals, such as electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG), different signal-processing techniques, signal de-noising, feature extraction and dimension reduction techniques, such as PCA, ICA, KPCA, MSPCA, entropy measures, and other statistical measures, and more. This book is a valuable source for bioinformaticians, medical doctors and other members of the biomedical field who need a cogent resource on the most recent and promising machine learning techniques for biomedical signals analysis. - Provides comprehensive knowledge in the application of machine learning tools in biomedical signal analysis for medical diagnostics, brain computer interface and man/machine interaction - Explains how to apply machine learning techniques to EEG, ECG and EMG signals - Gives basic knowledge on predictive modeling in biomedical time series and advanced knowledge in machine learning for biomedical time series
Publisher: Academic Press
ISBN: 0128176733
Category : Medical
Languages : en
Pages : 458
Book Description
Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques: A MATLAB Based Approach presents how machine learning and biomedical signal processing methods can be used in biomedical signal analysis. Different machine learning applications in biomedical signal analysis, including those for electrocardiogram, electroencephalogram and electromyogram are described in a practical and comprehensive way, helping readers with limited knowledge. Sections cover biomedical signals and machine learning techniques, biomedical signals, such as electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG), different signal-processing techniques, signal de-noising, feature extraction and dimension reduction techniques, such as PCA, ICA, KPCA, MSPCA, entropy measures, and other statistical measures, and more. This book is a valuable source for bioinformaticians, medical doctors and other members of the biomedical field who need a cogent resource on the most recent and promising machine learning techniques for biomedical signals analysis. - Provides comprehensive knowledge in the application of machine learning tools in biomedical signal analysis for medical diagnostics, brain computer interface and man/machine interaction - Explains how to apply machine learning techniques to EEG, ECG and EMG signals - Gives basic knowledge on predictive modeling in biomedical time series and advanced knowledge in machine learning for biomedical time series
IoT Based Control Networks and Intelligent Systems
Author: P. P. Joby
Publisher: Springer Nature
ISBN: 9811958459
Category : Technology & Engineering
Languages : en
Pages : 892
Book Description
This book gathers selected papers presented at International Conference on IoT Based Control Networks and Intelligent Systems (ICICNIS 2022), organized by St. Joseph’s College of Engineering and Technology, Kottayam, Kerala, India, during July 1–2, 2022. The book covers state-of-the-art research insights on Internet of things (IoT) paradigm to access, manage, and control the objects/things/people working under various information systems and deployed under wide range of applications like smart cities, health care, industries, and smart homes.
Publisher: Springer Nature
ISBN: 9811958459
Category : Technology & Engineering
Languages : en
Pages : 892
Book Description
This book gathers selected papers presented at International Conference on IoT Based Control Networks and Intelligent Systems (ICICNIS 2022), organized by St. Joseph’s College of Engineering and Technology, Kottayam, Kerala, India, during July 1–2, 2022. The book covers state-of-the-art research insights on Internet of things (IoT) paradigm to access, manage, and control the objects/things/people working under various information systems and deployed under wide range of applications like smart cities, health care, industries, and smart homes.