Author: Roni Irnawan
Publisher: Springer Nature
ISBN: 3030274888
Category : Technology & Engineering
Languages : en
Pages : 218
Book Description
This book discusses novel methods for planning and coordinating converters when an existing point-to-point (PtP) HVDC link is expanded into a multi-terminal HVDC (MTDC) system. It demonstrates that expanding an existing PtP HVDC link is the best way to build an MTDC system, and is especially a better option than the build-from-scratch approach in cases where several voltage-sourced converter (VSC) HVDC links are already in operation. The book reports in detail on the approaches used to estimate the new steady-state operation limits of the expanded system and examines the factors influencing them, revealing new operation limits in the process. Further, the book explains how to coordinate the converters to stay within the limits after there has been a disturbance in the system. In closing, it describes the current DC grid control concept, including how to implement it in an MTDC system, and introduces a new DC grid control layer, the primary control interface (IFC).
Planning and Control of Expandable Multi-Terminal VSC-HVDC Transmission Systems
Author: Roni Irnawan
Publisher: Springer Nature
ISBN: 3030274888
Category : Technology & Engineering
Languages : en
Pages : 218
Book Description
This book discusses novel methods for planning and coordinating converters when an existing point-to-point (PtP) HVDC link is expanded into a multi-terminal HVDC (MTDC) system. It demonstrates that expanding an existing PtP HVDC link is the best way to build an MTDC system, and is especially a better option than the build-from-scratch approach in cases where several voltage-sourced converter (VSC) HVDC links are already in operation. The book reports in detail on the approaches used to estimate the new steady-state operation limits of the expanded system and examines the factors influencing them, revealing new operation limits in the process. Further, the book explains how to coordinate the converters to stay within the limits after there has been a disturbance in the system. In closing, it describes the current DC grid control concept, including how to implement it in an MTDC system, and introduces a new DC grid control layer, the primary control interface (IFC).
Publisher: Springer Nature
ISBN: 3030274888
Category : Technology & Engineering
Languages : en
Pages : 218
Book Description
This book discusses novel methods for planning and coordinating converters when an existing point-to-point (PtP) HVDC link is expanded into a multi-terminal HVDC (MTDC) system. It demonstrates that expanding an existing PtP HVDC link is the best way to build an MTDC system, and is especially a better option than the build-from-scratch approach in cases where several voltage-sourced converter (VSC) HVDC links are already in operation. The book reports in detail on the approaches used to estimate the new steady-state operation limits of the expanded system and examines the factors influencing them, revealing new operation limits in the process. Further, the book explains how to coordinate the converters to stay within the limits after there has been a disturbance in the system. In closing, it describes the current DC grid control concept, including how to implement it in an MTDC system, and introduces a new DC grid control layer, the primary control interface (IFC).
Multi-terminal Direct-Current Grids
Author: Nilanjan Chaudhuri
Publisher: John Wiley & Sons
ISBN: 1118729102
Category : Technology & Engineering
Languages : en
Pages : 289
Book Description
A generic DC grid model that is compatible with the standard AC system stability model is presented and used to analyse the interaction between the DC grid and the host AC systems. A multi-terminal DC (MTDC) grid interconnecting multiple AC systems and offshore energy sources (e.g. wind farms) across the nations and continents would allow effective sharing of intermittent renewable resources and open market operation for secure and cost-effective supply of electricity. However, such DC grids are unprecedented with no operational experience. Despite lots of discussions and specific visions for setting up such MTDC grids particularly in Europe, none has yet been realized in practice due to two major technical barriers: Lack of proper understanding about the interaction between a MTDC grid and the surrounding AC systems. Commercial unavailability of efficient DC side fault current interruption technology for conventional voltage sourced converter systems This book addresses the first issue in details by presenting a comprehensive modeling, analysis and control design framework. Possible methodologies for autonomous power sharing and exchange of frequency support across a MTDC grid and their impact on overall stability is covered. An overview of the state-of-the-art, challenges and on-going research and development initiatives for DC side fault current interruption is also presented.
Publisher: John Wiley & Sons
ISBN: 1118729102
Category : Technology & Engineering
Languages : en
Pages : 289
Book Description
A generic DC grid model that is compatible with the standard AC system stability model is presented and used to analyse the interaction between the DC grid and the host AC systems. A multi-terminal DC (MTDC) grid interconnecting multiple AC systems and offshore energy sources (e.g. wind farms) across the nations and continents would allow effective sharing of intermittent renewable resources and open market operation for secure and cost-effective supply of electricity. However, such DC grids are unprecedented with no operational experience. Despite lots of discussions and specific visions for setting up such MTDC grids particularly in Europe, none has yet been realized in practice due to two major technical barriers: Lack of proper understanding about the interaction between a MTDC grid and the surrounding AC systems. Commercial unavailability of efficient DC side fault current interruption technology for conventional voltage sourced converter systems This book addresses the first issue in details by presenting a comprehensive modeling, analysis and control design framework. Possible methodologies for autonomous power sharing and exchange of frequency support across a MTDC grid and their impact on overall stability is covered. An overview of the state-of-the-art, challenges and on-going research and development initiatives for DC side fault current interruption is also presented.
Power System Modeling, Computation, and Control
Author: Joe H. Chow
Publisher: John Wiley & Sons
ISBN: 1119546877
Category : Technology & Engineering
Languages : en
Pages : 664
Book Description
Provides students with an understanding of the modeling and practice in power system stability analysis and control design, as well as the computational tools used by commercial vendors Bringing together wind, FACTS, HVDC, and several other modern elements, this book gives readers everything they need to know about power systems. It makes learning complex power system concepts, models, and dynamics simpler and more efficient while providing modern viewpoints of power system analysis. Power System Modeling, Computation, and Control provides students with a new and detailed analysis of voltage stability; a simple example illustrating the BCU method of transient stability analysis; and one of only a few derivations of the transient synchronous machine model. It offers a discussion on reactive power consumption of induction motors during start-up to illustrate the low-voltage phenomenon observed in urban load centers. Damping controller designs using power system stabilizer, HVDC systems, static var compensator, and thyristor-controlled series compensation are also examined. In addition, there are chapters covering flexible AC transmission Systems (FACTS)—including both thyristor and voltage-sourced converter technology—and wind turbine generation and modeling. Simplifies the learning of complex power system concepts, models, and dynamics Provides chapters on power flow solution, voltage stability, simulation methods, transient stability, small signal stability, synchronous machine models (steady-state and dynamic models), excitation systems, and power system stabilizer design Includes advanced analysis of voltage stability, voltage recovery during motor starts, FACTS and their operation, damping control design using various control equipment, wind turbine models, and control Contains numerous examples, tables, figures of block diagrams, MATLAB plots, and problems involving real systems Written by experienced educators whose previous books and papers are used extensively by the international scientific community Power System Modeling, Computation, and Control is an ideal textbook for graduate students of the subject, as well as for power system engineers and control design professionals.
Publisher: John Wiley & Sons
ISBN: 1119546877
Category : Technology & Engineering
Languages : en
Pages : 664
Book Description
Provides students with an understanding of the modeling and practice in power system stability analysis and control design, as well as the computational tools used by commercial vendors Bringing together wind, FACTS, HVDC, and several other modern elements, this book gives readers everything they need to know about power systems. It makes learning complex power system concepts, models, and dynamics simpler and more efficient while providing modern viewpoints of power system analysis. Power System Modeling, Computation, and Control provides students with a new and detailed analysis of voltage stability; a simple example illustrating the BCU method of transient stability analysis; and one of only a few derivations of the transient synchronous machine model. It offers a discussion on reactive power consumption of induction motors during start-up to illustrate the low-voltage phenomenon observed in urban load centers. Damping controller designs using power system stabilizer, HVDC systems, static var compensator, and thyristor-controlled series compensation are also examined. In addition, there are chapters covering flexible AC transmission Systems (FACTS)—including both thyristor and voltage-sourced converter technology—and wind turbine generation and modeling. Simplifies the learning of complex power system concepts, models, and dynamics Provides chapters on power flow solution, voltage stability, simulation methods, transient stability, small signal stability, synchronous machine models (steady-state and dynamic models), excitation systems, and power system stabilizer design Includes advanced analysis of voltage stability, voltage recovery during motor starts, FACTS and their operation, damping control design using various control equipment, wind turbine models, and control Contains numerous examples, tables, figures of block diagrams, MATLAB plots, and problems involving real systems Written by experienced educators whose previous books and papers are used extensively by the international scientific community Power System Modeling, Computation, and Control is an ideal textbook for graduate students of the subject, as well as for power system engineers and control design professionals.
Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems
Author: Kamran Sharifabadi
Publisher: John Wiley & Sons
ISBN: 1118851528
Category : Science
Languages : en
Pages : 415
Book Description
Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems is a comprehensive guide to semiconductor technologies applicable for MMC design, component sizing control, modulation, and application of the MMC technology for HVDC transmission. Separated into three distinct parts, the first offers an overview of MMC technology, including information on converter component sizing, Control and Communication, Protection and Fault Management, and Generic Modelling and Simulation. The second covers the applications of MMC in offshore WPP, including planning, technical and economic requirements and optimization options, fault management, dynamic and transient stability. Finally, the third chapter explores the applications of MMC in HVDC transmission and Multi Terminal configurations, including Supergrids. Key features: Unique coverage of the offshore application and optimization of MMC-HVDC schemes for the export of offshore wind energy to the mainland. Comprehensive explanation of MMC application in HVDC and MTDC transmission technology. Detailed description of MMC components, control and modulation, different modeling approaches, converter dynamics under steady-state and fault contingencies including application and housing of MMC in HVDC schemes for onshore and offshore. Analysis of DC fault detection and protection technologies, system studies required for the integration of HVDC terminals to offshore wind power plants, and commissioning procedures for onshore and offshore HVDC terminals. A set of self-explanatory simulation models for HVDC test cases is available to download from the companion website. This book provides essential reading for graduate students and researchers, as well as field engineers and professionals who require an in-depth understanding of MMC technology.
Publisher: John Wiley & Sons
ISBN: 1118851528
Category : Science
Languages : en
Pages : 415
Book Description
Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems is a comprehensive guide to semiconductor technologies applicable for MMC design, component sizing control, modulation, and application of the MMC technology for HVDC transmission. Separated into three distinct parts, the first offers an overview of MMC technology, including information on converter component sizing, Control and Communication, Protection and Fault Management, and Generic Modelling and Simulation. The second covers the applications of MMC in offshore WPP, including planning, technical and economic requirements and optimization options, fault management, dynamic and transient stability. Finally, the third chapter explores the applications of MMC in HVDC transmission and Multi Terminal configurations, including Supergrids. Key features: Unique coverage of the offshore application and optimization of MMC-HVDC schemes for the export of offshore wind energy to the mainland. Comprehensive explanation of MMC application in HVDC and MTDC transmission technology. Detailed description of MMC components, control and modulation, different modeling approaches, converter dynamics under steady-state and fault contingencies including application and housing of MMC in HVDC schemes for onshore and offshore. Analysis of DC fault detection and protection technologies, system studies required for the integration of HVDC terminals to offshore wind power plants, and commissioning procedures for onshore and offshore HVDC terminals. A set of self-explanatory simulation models for HVDC test cases is available to download from the companion website. This book provides essential reading for graduate students and researchers, as well as field engineers and professionals who require an in-depth understanding of MMC technology.
Modeling, Operation, and Analysis of DC Grids
Author: Alejandro Garces
Publisher: Academic Press
ISBN: 012822102X
Category : Technology & Engineering
Languages : en
Pages : 390
Book Description
Modeling, Operation, and Analysis of DC Grids presents a unified vision of direct current grids with their core analysis techniques, uniting power electronics, power systems, and multiple scales of applications. Part one presents high power applications such as HVDC transmission for wind energy, faults and protections in HVDC lines, stability analysis and inertia emulation. The second part addresses current applications in low voltage such as microgrids, power trains and aircraft applications. All chapters are self-contained with numerical and experimental analysis. - Provides a unified, coherent presentation of DC grid analysis based on modern research in power systems, power electronics, microgrids and MT-HVDC transmission - Covers multiple scales of applications in one location, addressing DC grids in electric vehicles, microgrids, DC distribution, multi-terminal HVDC transmission and supergrids - Supported by a unified set of MATLAB and Simulink test systems designed for application scenarios
Publisher: Academic Press
ISBN: 012822102X
Category : Technology & Engineering
Languages : en
Pages : 390
Book Description
Modeling, Operation, and Analysis of DC Grids presents a unified vision of direct current grids with their core analysis techniques, uniting power electronics, power systems, and multiple scales of applications. Part one presents high power applications such as HVDC transmission for wind energy, faults and protections in HVDC lines, stability analysis and inertia emulation. The second part addresses current applications in low voltage such as microgrids, power trains and aircraft applications. All chapters are self-contained with numerical and experimental analysis. - Provides a unified, coherent presentation of DC grid analysis based on modern research in power systems, power electronics, microgrids and MT-HVDC transmission - Covers multiple scales of applications in one location, addressing DC grids in electric vehicles, microgrids, DC distribution, multi-terminal HVDC transmission and supergrids - Supported by a unified set of MATLAB and Simulink test systems designed for application scenarios
Intelligent Computing in Smart Grid and Electrical Vehicles
Author: Kang Li
Publisher: Springer
ISBN: 3662452863
Category : Computers
Languages : en
Pages : 570
Book Description
This book constitutes the third part of the refereed proceedings of the International Conference on Life System Modeling and Simulation, LSMS 2014, and of the International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2014, held in Shanghai, China, in September 2014. The 159 revised full papers presented in the three volumes of CCIS 461-463 were carefully reviewed and selected from 572 submissions. The papers of this volume are organized in topical sections on computational intelligence in utilization of clean and renewable energy resources, including fuel cell, hydrogen, solar and winder power, marine and biomass; intelligent modeling, control and supervision for energy saving and pollution reduction; intelligent methods in developing electric vehicles, engines and equipment; intelligent computing and control in distributed power generation systems; intelligent modeling, simulation and control of power electronics and power networks; intelligent road management and electricity marketing strategies; intelligent water treatment and waste management technologies; integration of electric vehicles with smart grid.
Publisher: Springer
ISBN: 3662452863
Category : Computers
Languages : en
Pages : 570
Book Description
This book constitutes the third part of the refereed proceedings of the International Conference on Life System Modeling and Simulation, LSMS 2014, and of the International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2014, held in Shanghai, China, in September 2014. The 159 revised full papers presented in the three volumes of CCIS 461-463 were carefully reviewed and selected from 572 submissions. The papers of this volume are organized in topical sections on computational intelligence in utilization of clean and renewable energy resources, including fuel cell, hydrogen, solar and winder power, marine and biomass; intelligent modeling, control and supervision for energy saving and pollution reduction; intelligent methods in developing electric vehicles, engines and equipment; intelligent computing and control in distributed power generation systems; intelligent modeling, simulation and control of power electronics and power networks; intelligent road management and electricity marketing strategies; intelligent water treatment and waste management technologies; integration of electric vehicles with smart grid.
Power System Flexibility
Author: Ming Zhou
Publisher: Springer Nature
ISBN: 9811990751
Category : Technology & Engineering
Languages : en
Pages : 279
Book Description
This book provides a detailed description of the flexibility of the power system with high share of variable renewable generation, including power system flexibility modeling, flexibility-based economic dispatch, demand side flexibility response, large-scale distributed flexible resources aggregation and market design for enhancing the flexibility of the power system, etc. The book provides an appropriate blend of theoretical background and practical applications of the power system flexibility, which are developed as working algorithms, coded in MATLAB and GAMS environments. This feature strengthens the usefulness of the book for graduate students and practitioners. Students will gain an insightful understanding of the flexibility of the power system with high share of renewables integration, including: (1) the formulation of flexibility modeling and flexibility-based economic dispatch models, (2) the familiarization with efficient solution algorithms for such models, (3) insights into these problems through the detailed analysis of numerous illustrative examples and (4) market design approach for enhancing the flexibility of the power system. Hopefully, this book greatly benefits readers in the fields of energy economics and engineering.
Publisher: Springer Nature
ISBN: 9811990751
Category : Technology & Engineering
Languages : en
Pages : 279
Book Description
This book provides a detailed description of the flexibility of the power system with high share of variable renewable generation, including power system flexibility modeling, flexibility-based economic dispatch, demand side flexibility response, large-scale distributed flexible resources aggregation and market design for enhancing the flexibility of the power system, etc. The book provides an appropriate blend of theoretical background and practical applications of the power system flexibility, which are developed as working algorithms, coded in MATLAB and GAMS environments. This feature strengthens the usefulness of the book for graduate students and practitioners. Students will gain an insightful understanding of the flexibility of the power system with high share of renewables integration, including: (1) the formulation of flexibility modeling and flexibility-based economic dispatch models, (2) the familiarization with efficient solution algorithms for such models, (3) insights into these problems through the detailed analysis of numerous illustrative examples and (4) market design approach for enhancing the flexibility of the power system. Hopefully, this book greatly benefits readers in the fields of energy economics and engineering.
Integrating Wind Energy to Weak Power Grids using High Voltage Direct Current Technology
Author: Nilanjan Ray Chaudhuri
Publisher: Springer
ISBN: 3030034097
Category : Technology & Engineering
Languages : en
Pages : 252
Book Description
This book is the first of its kind to provide a comprehensive framework for connecting wind farms to weak power grids using High Voltage DC technology. Most onshore wind energy potential is located in areas that are hardly inhabited and the majority of wind energy that is being harnessed by European countries is currently offshore, both sourced from locations that lack the presence of a strong power grid. This book focuses on the many challenges the wind farm industry faces integrating both onshore and offshore wind to ‘weak’ grids using HVDC technology. Through case studies and illustrative examples the author presents a framework for theoretical and mathematical analysis of HVDC technology, its application and successful integration of onshore and offshore wind farms. Presents a unified approach for integrating onshore and offshore wind energy to existing AC systems through MTDC grids; Includes an extensive treatment of onshore wind farms connected to LCC HVDC systems; Provides a comprehensive analysis of offshore wind farms connected to VSC HVDC systems.
Publisher: Springer
ISBN: 3030034097
Category : Technology & Engineering
Languages : en
Pages : 252
Book Description
This book is the first of its kind to provide a comprehensive framework for connecting wind farms to weak power grids using High Voltage DC technology. Most onshore wind energy potential is located in areas that are hardly inhabited and the majority of wind energy that is being harnessed by European countries is currently offshore, both sourced from locations that lack the presence of a strong power grid. This book focuses on the many challenges the wind farm industry faces integrating both onshore and offshore wind to ‘weak’ grids using HVDC technology. Through case studies and illustrative examples the author presents a framework for theoretical and mathematical analysis of HVDC technology, its application and successful integration of onshore and offshore wind farms. Presents a unified approach for integrating onshore and offshore wind energy to existing AC systems through MTDC grids; Includes an extensive treatment of onshore wind farms connected to LCC HVDC systems; Provides a comprehensive analysis of offshore wind farms connected to VSC HVDC systems.
HVDC/FACTS for Grid Services in Electric Power Systems
Author: José M. Maza-Ortega
Publisher: MDPI
ISBN: 3039283766
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Electric power systems are headed for a true changing of the guard, due to the urgent need for achieving sustainable energy delivery. Fortunately, the development of new technologies is driving the transition of power systems toward a carbon-free paradigm while maintaining the current standards of quality, efficiency, and resilience. The introduction of HVDC and FACTS in the 20th century, taking advantage of dramatic improvements in power electronics and control, gave rise to unprecedented levels of flexibility and speed of response in comparison with traditional electromechanical devices. This flexibility is nowadays required more than ever in order to solve a puzzle with pieces that do not always fit perfectly. This Special Issue aims to address the role that FACTS and HVDC systems can play in helping electric power systems face the challenges of the near future.
Publisher: MDPI
ISBN: 3039283766
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Electric power systems are headed for a true changing of the guard, due to the urgent need for achieving sustainable energy delivery. Fortunately, the development of new technologies is driving the transition of power systems toward a carbon-free paradigm while maintaining the current standards of quality, efficiency, and resilience. The introduction of HVDC and FACTS in the 20th century, taking advantage of dramatic improvements in power electronics and control, gave rise to unprecedented levels of flexibility and speed of response in comparison with traditional electromechanical devices. This flexibility is nowadays required more than ever in order to solve a puzzle with pieces that do not always fit perfectly. This Special Issue aims to address the role that FACTS and HVDC systems can play in helping electric power systems face the challenges of the near future.
Proceedings of 2020 International Top-Level Forum on Engineering Science and Technology Development Strategy and The 5th PURPLE MOUNTAIN FORUM (PMF2020)
Author: Yusheng Xue
Publisher: Springer Nature
ISBN: 9811597464
Category : Technology & Engineering
Languages : en
Pages : 1022
Book Description
This book includes original, peer-reviewed research papers from the 2020 International Top-Level Forum on Engineering Science and Technology Development Strategy -- the 5th PURPLE MOUNTAIN FORUM on Smart Grid Protection and Control(PMF2020), held in Nanjing, China, on August 15-16, 2020. Hot topics and cutting edge technologies are included: - Advanced Power Transmission Technology - AC-DC Hybrid Power Grid Technology - eIoT Technology and Application - Operation, Protection and Control of Power Systems Supplied with High Penetration of Renewable Energy Sources - Active Distribution Network Technology - Smart Power Consumption and Energy-saving Technology - New Technology on Substation Automation - Clean Energy Technology - Energy Storage Technology and Application - Key Technology and Application of Integrated Energy - Application of AI, Block Chain, Big Data and Other New Technologies in Energy Industry - Application of New Information and Communication Technology in Energy Industry - Application of Technical Standard System and Related Research in Energy Industry The papers included in this proceeding share the latest research results and practical application examples on the methodologies and algorithms in these areas, which makes the book a valuable reference for researchers, engineers, and university students.
Publisher: Springer Nature
ISBN: 9811597464
Category : Technology & Engineering
Languages : en
Pages : 1022
Book Description
This book includes original, peer-reviewed research papers from the 2020 International Top-Level Forum on Engineering Science and Technology Development Strategy -- the 5th PURPLE MOUNTAIN FORUM on Smart Grid Protection and Control(PMF2020), held in Nanjing, China, on August 15-16, 2020. Hot topics and cutting edge technologies are included: - Advanced Power Transmission Technology - AC-DC Hybrid Power Grid Technology - eIoT Technology and Application - Operation, Protection and Control of Power Systems Supplied with High Penetration of Renewable Energy Sources - Active Distribution Network Technology - Smart Power Consumption and Energy-saving Technology - New Technology on Substation Automation - Clean Energy Technology - Energy Storage Technology and Application - Key Technology and Application of Integrated Energy - Application of AI, Block Chain, Big Data and Other New Technologies in Energy Industry - Application of New Information and Communication Technology in Energy Industry - Application of Technical Standard System and Related Research in Energy Industry The papers included in this proceeding share the latest research results and practical application examples on the methodologies and algorithms in these areas, which makes the book a valuable reference for researchers, engineers, and university students.