Author: Liquan Xie
Publisher: CRC Press
ISBN: 1138000582
Category : Technology & Engineering
Languages : en
Pages : 366
Book Description
Modeling and Computation in Engineering II (CMCE 2013, Hong Kong, 22-23 June 2013) includes 50 contributions on modeling and simulation technology, which were presented at the 2nd SREE Conference on Modeling and Computation in Engineering (CMCE 2013) and the 3rd SREE Workshop on Applied Mechanics and Civil Engineering (AMCE 2013), both held in Hong Kong, 22-23 June 2013 . The topics covered include: - Modeling technology - Simulation technology and tools - Computation methods and their engineering applications - Mechanics in engineering Modeling and Computation in Engineering II reviews recent advances in multiple areas, including applied mechanics & civil engineering, modeling & simulation in engineering, design theories, construction science and advanced material applications in building structures, underground structures, bridge structures, hydraulic engineering, municipal engineering, port and coastal engineering, road and transportation engineering, and will be invaluable to academics and professional interested in civil, hydraulic and mechanical engineering.
Modeling and Computation in Engineering II
Author: Liquan Xie
Publisher: CRC Press
ISBN: 1138000582
Category : Technology & Engineering
Languages : en
Pages : 366
Book Description
Modeling and Computation in Engineering II (CMCE 2013, Hong Kong, 22-23 June 2013) includes 50 contributions on modeling and simulation technology, which were presented at the 2nd SREE Conference on Modeling and Computation in Engineering (CMCE 2013) and the 3rd SREE Workshop on Applied Mechanics and Civil Engineering (AMCE 2013), both held in Hong Kong, 22-23 June 2013 . The topics covered include: - Modeling technology - Simulation technology and tools - Computation methods and their engineering applications - Mechanics in engineering Modeling and Computation in Engineering II reviews recent advances in multiple areas, including applied mechanics & civil engineering, modeling & simulation in engineering, design theories, construction science and advanced material applications in building structures, underground structures, bridge structures, hydraulic engineering, municipal engineering, port and coastal engineering, road and transportation engineering, and will be invaluable to academics and professional interested in civil, hydraulic and mechanical engineering.
Publisher: CRC Press
ISBN: 1138000582
Category : Technology & Engineering
Languages : en
Pages : 366
Book Description
Modeling and Computation in Engineering II (CMCE 2013, Hong Kong, 22-23 June 2013) includes 50 contributions on modeling and simulation technology, which were presented at the 2nd SREE Conference on Modeling and Computation in Engineering (CMCE 2013) and the 3rd SREE Workshop on Applied Mechanics and Civil Engineering (AMCE 2013), both held in Hong Kong, 22-23 June 2013 . The topics covered include: - Modeling technology - Simulation technology and tools - Computation methods and their engineering applications - Mechanics in engineering Modeling and Computation in Engineering II reviews recent advances in multiple areas, including applied mechanics & civil engineering, modeling & simulation in engineering, design theories, construction science and advanced material applications in building structures, underground structures, bridge structures, hydraulic engineering, municipal engineering, port and coastal engineering, road and transportation engineering, and will be invaluable to academics and professional interested in civil, hydraulic and mechanical engineering.
Modeling and Computation in Engineering II
Author: Liquan Xie
Publisher: CRC Press
ISBN: 1315884917
Category : Technology & Engineering
Languages : en
Pages : 364
Book Description
Modeling and Computation in Engineering II (CMCE 2013, Hong Kong, 22-23 June 2013) includes 50 contributions on modeling and simulation technology, which were presented at the 2nd SREE Conference on Modeling and Computation in Engineering (CMCE 2013) and the 3rd SREE Workshop on Applied Mechanics and Civil Engineering (AMCE 2013), both held in Hong
Publisher: CRC Press
ISBN: 1315884917
Category : Technology & Engineering
Languages : en
Pages : 364
Book Description
Modeling and Computation in Engineering II (CMCE 2013, Hong Kong, 22-23 June 2013) includes 50 contributions on modeling and simulation technology, which were presented at the 2nd SREE Conference on Modeling and Computation in Engineering (CMCE 2013) and the 3rd SREE Workshop on Applied Mechanics and Civil Engineering (AMCE 2013), both held in Hong
Numerical Modeling in Materials Science and Engineering
Author: Michel Rappaz
Publisher: Springer Science & Business Media
ISBN: 3540426760
Category : Technology & Engineering
Languages : en
Pages : 556
Book Description
Computing application to materials science is one of the fastest-growing research areas. This book introduces the concepts and methodologies related to the modeling of the complex phenomena occurring in materials processing. It is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics, and for engineering professionals or researchers.
Publisher: Springer Science & Business Media
ISBN: 3540426760
Category : Technology & Engineering
Languages : en
Pages : 556
Book Description
Computing application to materials science is one of the fastest-growing research areas. This book introduces the concepts and methodologies related to the modeling of the complex phenomena occurring in materials processing. It is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics, and for engineering professionals or researchers.
Mathematical Modeling in Science and Engineering
Author: Ismael Herrera
Publisher: John Wiley & Sons
ISBN: 1118207203
Category : Technology & Engineering
Languages : en
Pages : 259
Book Description
A powerful, unified approach to mathematical and computational modeling in science and engineering Mathematical and computational modeling makes it possible to predict the behavior of a broad range of systems across a broad range of disciplines. This text guides students and professionals through the axiomatic approach, a powerful method that will enable them to easily master the principle types of mathematical and computational models used in engineering and science. Readers will discover that this axiomatic approach not only enables them to systematically construct effective models, it also enables them to apply these models to any macroscopic physical system. Mathematical Modeling in Science and Engineering focuses on models in which the processes to be modeled are expressed as systems of partial differential equations. It begins with an introductory discussion of the axiomatic formulation of basic models, setting the foundation for further topics such as: Mechanics of classical and non-classical continuous systems Solute transport by a free fluid Flow of a fluid in a porous medium Multiphase systems Enhanced oil recovery Fluid mechanics Throughout the text, diagrams are provided to help readers visualize and better understand complex mathematical concepts. A set of exercises at the end of each chapter enables readers to put their new modeling skills into practice. There is also a bibliography in each chapter to facilitate further investigation of individual topics. Mathematical Modeling in Science and Engineering is ideal for both students and professionals across the many disciplines of science and engineering that depend on mathematical and computational modeling to predict and understand complex systems.
Publisher: John Wiley & Sons
ISBN: 1118207203
Category : Technology & Engineering
Languages : en
Pages : 259
Book Description
A powerful, unified approach to mathematical and computational modeling in science and engineering Mathematical and computational modeling makes it possible to predict the behavior of a broad range of systems across a broad range of disciplines. This text guides students and professionals through the axiomatic approach, a powerful method that will enable them to easily master the principle types of mathematical and computational models used in engineering and science. Readers will discover that this axiomatic approach not only enables them to systematically construct effective models, it also enables them to apply these models to any macroscopic physical system. Mathematical Modeling in Science and Engineering focuses on models in which the processes to be modeled are expressed as systems of partial differential equations. It begins with an introductory discussion of the axiomatic formulation of basic models, setting the foundation for further topics such as: Mechanics of classical and non-classical continuous systems Solute transport by a free fluid Flow of a fluid in a porous medium Multiphase systems Enhanced oil recovery Fluid mechanics Throughout the text, diagrams are provided to help readers visualize and better understand complex mathematical concepts. A set of exercises at the end of each chapter enables readers to put their new modeling skills into practice. There is also a bibliography in each chapter to facilitate further investigation of individual topics. Mathematical Modeling in Science and Engineering is ideal for both students and professionals across the many disciplines of science and engineering that depend on mathematical and computational modeling to predict and understand complex systems.
Computational Modeling in Tissue Engineering
Author: Liesbet Geris
Publisher: Springer Science & Business Media
ISBN: 3642325637
Category : Technology & Engineering
Languages : en
Pages : 438
Book Description
One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in: (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each of the above mentioned areas of computational modeling. The underlying tissue engineering applications will vary from blood vessels over trachea to cartilage and bone. For the chapters describing examples of the first two areas, the main focus is on (the optimization of) mechanical signals, mass transport and fluid flow encountered by the cells in scaffolds and bioreactors as well as on the optimization of the cell population itself. In the chapters describing modeling contributions in the third area, the focus will shift towards the biology, the complex interactions between biology and the micro-environmental signals and the ways in which modeling might be able to assist in investigating and mastering this complexity. The chapters cover issues related to (multiscale/multiphysics) model building, training and validation, but also discuss recent advances in scientific computing techniques that are needed to implement these models as well as new tools that can be used to experimentally validate the computational results.
Publisher: Springer Science & Business Media
ISBN: 3642325637
Category : Technology & Engineering
Languages : en
Pages : 438
Book Description
One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in: (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each of the above mentioned areas of computational modeling. The underlying tissue engineering applications will vary from blood vessels over trachea to cartilage and bone. For the chapters describing examples of the first two areas, the main focus is on (the optimization of) mechanical signals, mass transport and fluid flow encountered by the cells in scaffolds and bioreactors as well as on the optimization of the cell population itself. In the chapters describing modeling contributions in the third area, the focus will shift towards the biology, the complex interactions between biology and the micro-environmental signals and the ways in which modeling might be able to assist in investigating and mastering this complexity. The chapters cover issues related to (multiscale/multiphysics) model building, training and validation, but also discuss recent advances in scientific computing techniques that are needed to implement these models as well as new tools that can be used to experimentally validate the computational results.
Engineering Computations and Modeling in MATLAB/Simulink
Author: Oleg A. Yakimenko
Publisher: Amer Inst of Aeronautics &
ISBN: 9781600867811
Category : Computers
Languages : en
Pages : 896
Book Description
"Engineering Computations and Modeling in MATLAB/Simulink" provides a broad overview of The
Publisher: Amer Inst of Aeronautics &
ISBN: 9781600867811
Category : Computers
Languages : en
Pages : 896
Book Description
"Engineering Computations and Modeling in MATLAB/Simulink" provides a broad overview of The
Modeling and Computing for Geotechnical Engineering
Author: M.S. Rahman
Publisher: CRC Press
ISBN: 0429760213
Category : Mathematics
Languages : en
Pages : 507
Book Description
Modeling and computing is becoming an essential part of the analysis and design of an engineered system. This is also true of "geotechnical systems", such as soil foundations, earth dams and other soil-structure systems. The general goal of modeling and computing is to predict and understand the behaviour of the system subjected to a variety of possible conditions/scenarios (with respect to both external stimuli and system parameters), which provides the basis for a rational design of the system. The essence of this is to predict the response of the system to a set of external forces. The modelling and computing essentially involve the following three phases: (a) Idealization of the actual physical problem, (b) Formulation of a mathematical model represented by a set of equations governing the response of the system, and (c) Solution of the governing equations (often requiring numerical methods) and graphical representation of the numerical results. This book will introduce these phases. MATLAB® codes and MAPLE® worksheets are available for those who have bought the book. Please contact the author at [email protected] or [email protected]. Kindly provide the invoice number and date of purchase.
Publisher: CRC Press
ISBN: 0429760213
Category : Mathematics
Languages : en
Pages : 507
Book Description
Modeling and computing is becoming an essential part of the analysis and design of an engineered system. This is also true of "geotechnical systems", such as soil foundations, earth dams and other soil-structure systems. The general goal of modeling and computing is to predict and understand the behaviour of the system subjected to a variety of possible conditions/scenarios (with respect to both external stimuli and system parameters), which provides the basis for a rational design of the system. The essence of this is to predict the response of the system to a set of external forces. The modelling and computing essentially involve the following three phases: (a) Idealization of the actual physical problem, (b) Formulation of a mathematical model represented by a set of equations governing the response of the system, and (c) Solution of the governing equations (often requiring numerical methods) and graphical representation of the numerical results. This book will introduce these phases. MATLAB® codes and MAPLE® worksheets are available for those who have bought the book. Please contact the author at [email protected] or [email protected]. Kindly provide the invoice number and date of purchase.
Computational Methods and Production Engineering
Author: J. Paulo Davim
Publisher: Woodhead Publishing
ISBN: 0857094823
Category : Business & Economics
Languages : en
Pages : 244
Book Description
Computational Methods and Production Engineering: Research and Development is an original book publishing refereed, high quality articles with a special emphasis on research and development in production engineering and production organization for modern industry. Innovation and the relationship between computational methods and production engineering are presented. Contents include: Finite Element method (FEM) modeling/simulation; Artificial neural networks (ANNs); Genetic algorithms; Evolutionary computation; Fuzzy logic; neuro-fuzzy systems; Particle swarm optimization (PSO); Tabu search and simulation annealing; and optimization techniques for complex systems. As computational methods currently have several applications, including modeling manufacturing processes, monitoring and control, parameters optimization and computer-aided process planning, this book is an ideal resource for practitioners. - Presents cutting-edge computational methods for production engineering - Explores the relationship between applied computational methods and production engineering - Presents new innovations in the field - Edited by a key researcher in the field
Publisher: Woodhead Publishing
ISBN: 0857094823
Category : Business & Economics
Languages : en
Pages : 244
Book Description
Computational Methods and Production Engineering: Research and Development is an original book publishing refereed, high quality articles with a special emphasis on research and development in production engineering and production organization for modern industry. Innovation and the relationship between computational methods and production engineering are presented. Contents include: Finite Element method (FEM) modeling/simulation; Artificial neural networks (ANNs); Genetic algorithms; Evolutionary computation; Fuzzy logic; neuro-fuzzy systems; Particle swarm optimization (PSO); Tabu search and simulation annealing; and optimization techniques for complex systems. As computational methods currently have several applications, including modeling manufacturing processes, monitoring and control, parameters optimization and computer-aided process planning, this book is an ideal resource for practitioners. - Presents cutting-edge computational methods for production engineering - Explores the relationship between applied computational methods and production engineering - Presents new innovations in the field - Edited by a key researcher in the field
Modeling and Computational Methods for Kinetic Equations
Author: Pierre Degond
Publisher: Springer Science & Business Media
ISBN: 9780817632540
Category : Mathematics
Languages : en
Pages : 372
Book Description
In recent years kinetic theory has developed in many areas of the physical sciences and engineering, and has extended the borders of its traditional fields of application. New applications in traffic flow engineering, granular media modeling, and polymer and phase transition physics have resulted in new numerical algorithms which depart from traditional stochastic Monte--Carlo methods. This monograph is a self-contained presentation of such recently developed aspects of kinetic theory, as well as a comprehensive account of the fundamentals of the theory. Emphasizing modeling techniques and numerical methods, the book provides a unified treatment of kinetic equations not found in more focused theoretical or applied works. The book is divided into two parts. Part I is devoted to the most fundamental kinetic model: the Boltzmann equation of rarefied gas dynamics. Additionally, widely used numerical methods for the discretization of the Boltzmann equation are reviewed: the Monte--Carlo method, spectral methods, and finite-difference methods. Part II considers specific applications: plasma kinetic modeling using the Landau--Fokker--Planck equations, traffic flow modeling, granular media modeling, quantum kinetic modeling, and coagulation-fragmentation problems. Modeling and Computational Methods of Kinetic Equations will be accessible to readers working in different communities where kinetic theory is important: graduate students, researchers and practitioners in mathematical physics, applied mathematics, and various branches of engineering. The work may be used for self-study, as a reference text, or in graduate-level courses in kinetic theory and its applications.
Publisher: Springer Science & Business Media
ISBN: 9780817632540
Category : Mathematics
Languages : en
Pages : 372
Book Description
In recent years kinetic theory has developed in many areas of the physical sciences and engineering, and has extended the borders of its traditional fields of application. New applications in traffic flow engineering, granular media modeling, and polymer and phase transition physics have resulted in new numerical algorithms which depart from traditional stochastic Monte--Carlo methods. This monograph is a self-contained presentation of such recently developed aspects of kinetic theory, as well as a comprehensive account of the fundamentals of the theory. Emphasizing modeling techniques and numerical methods, the book provides a unified treatment of kinetic equations not found in more focused theoretical or applied works. The book is divided into two parts. Part I is devoted to the most fundamental kinetic model: the Boltzmann equation of rarefied gas dynamics. Additionally, widely used numerical methods for the discretization of the Boltzmann equation are reviewed: the Monte--Carlo method, spectral methods, and finite-difference methods. Part II considers specific applications: plasma kinetic modeling using the Landau--Fokker--Planck equations, traffic flow modeling, granular media modeling, quantum kinetic modeling, and coagulation-fragmentation problems. Modeling and Computational Methods of Kinetic Equations will be accessible to readers working in different communities where kinetic theory is important: graduate students, researchers and practitioners in mathematical physics, applied mathematics, and various branches of engineering. The work may be used for self-study, as a reference text, or in graduate-level courses in kinetic theory and its applications.
Scientific Modeling and Simulations
Author: Sidney Yip
Publisher: Springer Science & Business Media
ISBN: 1402097417
Category : Science
Languages : en
Pages : 396
Book Description
Although computational modeling and simulation of material deformation was initiated with the study of structurally simple materials and inert environments, there is an increasing demand for predictive simulation of more realistic material structure and physical conditions. In particular, it is recognized that applied mechanical force can plausibly alter chemical reactions inside materials or at material interfaces, though the fundamental reasons for this chemomechanical coupling are studied in a material-speci c manner. Atomistic-level s- ulations can provide insight into the unit processes that facilitate kinetic reactions within complex materials, but the typical nanosecond timescales of such simulations are in contrast to the second-scale to hour-scale timescales of experimentally accessible or technologically relevant timescales. Further, in complex materials these key unit processes are “rare events” due to the high energy barriers associated with those processes. Examples of such rare events include unbinding between two proteins that tether biological cells to extracellular materials [1], unfolding of complex polymers, stiffness and bond breaking in amorphous glass bers and gels [2], and diffusive hops of point defects within crystalline alloys [3].
Publisher: Springer Science & Business Media
ISBN: 1402097417
Category : Science
Languages : en
Pages : 396
Book Description
Although computational modeling and simulation of material deformation was initiated with the study of structurally simple materials and inert environments, there is an increasing demand for predictive simulation of more realistic material structure and physical conditions. In particular, it is recognized that applied mechanical force can plausibly alter chemical reactions inside materials or at material interfaces, though the fundamental reasons for this chemomechanical coupling are studied in a material-speci c manner. Atomistic-level s- ulations can provide insight into the unit processes that facilitate kinetic reactions within complex materials, but the typical nanosecond timescales of such simulations are in contrast to the second-scale to hour-scale timescales of experimentally accessible or technologically relevant timescales. Further, in complex materials these key unit processes are “rare events” due to the high energy barriers associated with those processes. Examples of such rare events include unbinding between two proteins that tether biological cells to extracellular materials [1], unfolding of complex polymers, stiffness and bond breaking in amorphous glass bers and gels [2], and diffusive hops of point defects within crystalline alloys [3].