Model Theory and Modules

Model Theory and Modules PDF Author: Mike Prest
Publisher: Cambridge University Press
ISBN: 0521348331
Category : Mathematics
Languages : en
Pages : 402

Get Book Here

Book Description
In recent years the interplay between model theory and other branches of mathematics has led to many deep and intriguing results. In this, the first book on the topic, the theme is the interplay between model theory and the theory of modules. The book is intended to be a self-contained introduction to the subject and introduces the requisite model theory and module theory as it is needed. Dr Prest develops the basic ideas concerning what can be said about modules using the information which may be expressed in a first-order language. Later chapters discuss stability-theoretic aspects of modules, and structure and classification theorems over various types of rings and for certain classes of modules. Both algebraists and logicians will enjoy this account of an area in which algebra and model theory interact in a significant way. The book includes numerous examples and exercises and consequently will make an ideal introduction for graduate students coming to this subject for the first time.

Model Theory and Modules

Model Theory and Modules PDF Author: Mike Prest
Publisher: Cambridge University Press
ISBN: 0521348331
Category : Mathematics
Languages : en
Pages : 402

Get Book Here

Book Description
In recent years the interplay between model theory and other branches of mathematics has led to many deep and intriguing results. In this, the first book on the topic, the theme is the interplay between model theory and the theory of modules. The book is intended to be a self-contained introduction to the subject and introduces the requisite model theory and module theory as it is needed. Dr Prest develops the basic ideas concerning what can be said about modules using the information which may be expressed in a first-order language. Later chapters discuss stability-theoretic aspects of modules, and structure and classification theorems over various types of rings and for certain classes of modules. Both algebraists and logicians will enjoy this account of an area in which algebra and model theory interact in a significant way. The book includes numerous examples and exercises and consequently will make an ideal introduction for graduate students coming to this subject for the first time.

Model Theory of Modules, Algebras and Categories

Model Theory of Modules, Algebras and Categories PDF Author: Alberto Facchini
Publisher: American Mathematical Soc.
ISBN: 1470443678
Category : Mathematics
Languages : en
Pages : 250

Get Book Here

Book Description
This volume contains the proceedings of the international conference Model Theory of Modules, Algebras and Categories, held from July 28–August 2, 2017, at the Ettore Majorana Foundation and Centre for Scientific Culture in Erice, Italy. Papers contained in this volume cover recent developments in model theory, module theory and category theory, and their intersection.

Model Categories

Model Categories PDF Author: Mark Hovey
Publisher: American Mathematical Soc.
ISBN: 0821843613
Category : Mathematics
Languages : en
Pages : 229

Get Book Here

Book Description
Model categories are used as a tool for inverting certain maps in a category in a controllable manner. They are useful in diverse areas of mathematics. This book offers a comprehensive study of the relationship between a model category and its homotopy category. It develops the theory of model categories, giving a development of the main examples.

Model Theoretic Algebra With Particular Emphasis on Fields, Rings, Modules

Model Theoretic Algebra With Particular Emphasis on Fields, Rings, Modules PDF Author: Christian.U Jensen
Publisher: Routledge
ISBN: 1351431129
Category : Mathematics
Languages : en
Pages : 458

Get Book Here

Book Description
This volume highlights the links between model theory and algebra. The work contains a definitive account of algebraically compact modules, a topic of central importance for both module and model theory. Using concrete examples, particular emphasis is given to model theoretic concepts, such as axiomizability. Pure mathematicians, especially algebraists, ring theorists, logicians, model theorists and representation theorists, should find this an absorbing and stimulating book.

Rings, Modules, and Algebras in Stable Homotopy Theory

Rings, Modules, and Algebras in Stable Homotopy Theory PDF Author: Anthony D. Elmendorf
Publisher: American Mathematical Soc.
ISBN: 0821843036
Category : Mathematics
Languages : en
Pages : 265

Get Book Here

Book Description
This book introduces a new point-set level approach to stable homotopy theory that has already had many applications and promises to have a lasting impact on the subject. Given the sphere spectrum $S$, the authors construct an associative, commutative, and unital smash product in a complete and cocomplete category of ``$S$-modules'' whose derived category is equivalent to the classical stable homotopy category. This construction allows for a simple and algebraically manageable definition of ``$S$-algebras'' and ``commutative $S$-algebras'' in terms of associative, or associative and commutative, products $R\wedge SR \longrightarrow R$. These notions are essentially equivalent to the earlier notions of $A {\infty $ and $E {\infty $ ring spectra, and the older notions feed naturally into the new framework to provide plentiful examples. There is an equally simple definition of $R$-modules in terms of maps $R\wedge SM\longrightarrow M$. When $R$ is commutative, the category of $R$-modules also has a

Categories and Modules with K-Theory in View

Categories and Modules with K-Theory in View PDF Author: A. J. Berrick
Publisher: Cambridge University Press
ISBN: 9780521632768
Category : Mathematics
Languages : en
Pages : 384

Get Book Here

Book Description
This book, first published in 2000, develops aspects of category theory fundamental to the study of algebraic K-theory. Ring and module theory illustrates category theory which provides insight into more advanced topics in module theory. Starting with categories in general, the text then examines categories of K-theory. This leads to the study of tensor products and the Morita theory. The categorical approach to localizations and completions of modules is formulated in terms of direct and inverse limits, prompting a discussion of localization of categories in general. Finally, local-global techniques which supply information about modules from their localizations and completions and underlie some interesting applications of K-theory to number theory and geometry are considered. Many useful exercises, concrete illustrations of abstract concepts placed in their historical settings and an extensive list of references are included. This book will help all who wish to work in K-theory to master its prerequisites.

Advances in Algebra and Model Theory

Advances in Algebra and Model Theory PDF Author: M Droste
Publisher: CRC Press
ISBN: 9789056991012
Category : Mathematics
Languages : en
Pages : 516

Get Book Here

Book Description
Contains 25 surveys in algebra and model theory, all written by leading experts in the field. The surveys are based around talks given at conferences held in Essen, 1994, and Dresden, 1995. Each contribution is written in such a way as to highlight the ideas that were discussed at the conferences, and also to stimulate open research problems in a form accessible to the whole mathematical community. The topics include field and ring theory as well as groups, ordered algebraic structure and their relationship to model theory. Several papers deal with infinite permutation groups, abelian groups, modules and their relatives and representations. Model theoretic aspects include quantifier elimination in skew fields, Hilbert's 17th problem, (aleph-0)-categorical structures and Boolean algebras. Moreover symmetry questions and automorphism groups of orders are covered. This work contains 25 surveys in algebra and model theory, each is written in such a way as to highlight the ideas that were discussed at Conferences, and also to stimulate open research problems in a form accessible to the whole mathematical community.

Module Theory

Module Theory PDF Author: Thomas Scott Blyth
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
This textbook provides a self-contained course on the basic properties of modules and their importance in the theory of linear algebra. The first 11 chapters introduce the central results and applications of the theory of modules. Subsequent chapters deal with advanced linear algebra, including multilinear and tensor algebra, and explore such topics as the exterior product approach to the determinants of matrices, a module-theoretic approach to the structure of finitely generated Abelian groups, canonical forms, and normal transformations. Suitable for undergraduate courses, the text now includes a proof of the celebrated Wedderburn-Artin theorem which determines the structure of simple Artinian rings.

Categorical, Homological and Combinatorial Methods in Algebra

Categorical, Homological and Combinatorial Methods in Algebra PDF Author: Ashish K. Srivastava
Publisher: American Mathematical Soc.
ISBN: 1470443686
Category : Education
Languages : en
Pages : 370

Get Book Here

Book Description
This book contains the proceedings of the AMS Special Session, in honor of S. K. Jain's 80th birthday, on Categorical, Homological and Combinatorial Methods in Algebra held from March 16–18, 2018, at Ohio State University, Columbus, Ohio. The articles contained in this volume aim to showcase the current state of art in categorical, homological and combinatorial aspects of algebra.

Rings and Categories of Modules

Rings and Categories of Modules PDF Author: Frank W. Anderson
Publisher: Springer Science & Business Media
ISBN: 1461244188
Category : Mathematics
Languages : en
Pages : 386

Get Book Here

Book Description
This book is intended to provide a reasonably self-contained account of a major portion of the general theory of rings and modules suitable as a text for introductory and more advanced graduate courses. We assume the famil iarity with rings usually acquired in standard undergraduate algebra courses. Our general approach is categorical rather than arithmetical. The continuing theme of the text is the study of the relationship between the one-sided ideal structure that a ring may possess and the behavior of its categories of modules. Following a brief outline of set-theoretic and categorical foundations, the text begins with the basic definitions and properties of rings, modules and homomorphisms and ranges through comprehensive treatments of direct sums, finiteness conditions, the Wedderburn-Artin Theorem, the Jacobson radical, the hom and tensor functions, Morita equivalence and duality, de composition theory of injective and projective modules, and semi perfect and perfect rings. In this second edition we have included a chapter containing many of the classical results on artinian rings that have hdped to form the foundation for much of the contemporary research on the representation theory of artinian rings and finite dimensional algebras. Both to illustrate the text and to extend it we have included a substantial number of exercises covering a wide spectrum of difficulty. There are, of course" many important areas of ring and module theory that the text does not touch upon.