Model Theory in Algebra, Analysis and Arithmetic

Model Theory in Algebra, Analysis and Arithmetic PDF Author: Lou van den Dries
Publisher: Springer
ISBN: 3642549365
Category : Mathematics
Languages : en
Pages : 201

Get Book Here

Book Description
Presenting recent developments and applications, the book focuses on four main topics in current model theory: 1) the model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; and 4) the model theory of real and complex exponentiation. Young researchers in model theory will particularly benefit from the book, as will more senior researchers in other branches of mathematics.

Model Theory in Algebra, Analysis and Arithmetic

Model Theory in Algebra, Analysis and Arithmetic PDF Author: Lou van den Dries
Publisher: Springer
ISBN: 3642549365
Category : Mathematics
Languages : en
Pages : 201

Get Book Here

Book Description
Presenting recent developments and applications, the book focuses on four main topics in current model theory: 1) the model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; and 4) the model theory of real and complex exponentiation. Young researchers in model theory will particularly benefit from the book, as will more senior researchers in other branches of mathematics.

Model Theory in Algebra, Analysis and Arithmetic

Model Theory in Algebra, Analysis and Arithmetic PDF Author: Lou van den Dries
Publisher: Springer
ISBN: 9783642549359
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
Presenting recent developments and applications, the book focuses on four main topics in current model theory: 1) the model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; and 4) the model theory of real and complex exponentiation. Young researchers in model theory will particularly benefit from the book, as will more senior researchers in other branches of mathematics.

Model Theory in Algebra, Analysis and Arithmetic

Model Theory in Algebra, Analysis and Arithmetic PDF Author: Lou Van Den Dries
Publisher:
ISBN: 9783642549373
Category :
Languages : en
Pages : 208

Get Book Here

Book Description


Model Theory : An Introduction

Model Theory : An Introduction PDF Author: David Marker
Publisher: Springer Science & Business Media
ISBN: 0387227342
Category : Mathematics
Languages : en
Pages : 342

Get Book Here

Book Description
Assumes only a familiarity with algebra at the beginning graduate level; Stresses applications to algebra; Illustrates several of the ways Model Theory can be a useful tool in analyzing classical mathematical structures

A Course in Model Theory

A Course in Model Theory PDF Author: Katrin Tent
Publisher: Cambridge University Press
ISBN: 052176324X
Category : Mathematics
Languages : en
Pages : 259

Get Book Here

Book Description
Concise introduction to current topics in model theory, including simple and stable theories.

Mathematical Logic and Model Theory

Mathematical Logic and Model Theory PDF Author: Alexander Prestel
Publisher: Springer Science & Business Media
ISBN: 1447121767
Category : Mathematics
Languages : en
Pages : 198

Get Book Here

Book Description
Mathematical Logic and Model Theory: A Brief Introduction offers a streamlined yet easy-to-read introduction to mathematical logic and basic model theory. It presents, in a self-contained manner, the essential aspects of model theory needed to understand model theoretic algebra. As a profound application of model theory in algebra, the last part of this book develops a complete proof of Ax and Kochen's work on Artin's conjecture about Diophantine properties of p-adic number fields. The character of model theoretic constructions and results differ quite significantly from that commonly found in algebra, by the treatment of formulae as mathematical objects. It is therefore indispensable to first become familiar with the problems and methods of mathematical logic. Therefore, the text is divided into three parts: an introduction into mathematical logic (Chapter 1), model theory (Chapters 2 and 3), and the model theoretic treatment of several algebraic theories (Chapter 4). This book will be of interest to both advanced undergraduate and graduate students studying model theory and its applications to algebra. It may also be used for self-study.

Model Theory of Algebra and Arithmetic

Model Theory of Algebra and Arithmetic PDF Author: L. Pacholski
Publisher: Springer
ISBN: 354038393X
Category : Mathematics
Languages : en
Pages : 420

Get Book Here

Book Description


Model Theory and Algebraic Geometry

Model Theory and Algebraic Geometry PDF Author: Elisabeth Bouscaren
Publisher: Springer
ISBN: 3540685219
Category : Mathematics
Languages : en
Pages : 223

Get Book Here

Book Description
This introduction to the recent exciting developments in the applications of model theory to algebraic geometry, illustrated by E. Hrushovski's model-theoretic proof of the geometric Mordell-Lang Conjecture starts from very basic background and works up to the detailed exposition of Hrushovski's proof, explaining the necessary tools and results from stability theory on the way. The first chapter is an informal introduction to model theory itself, making the book accessible (with a little effort) to readers with no previous knowledge of model theory. The authors have collaborated closely to achieve a coherent and self- contained presentation, whereby the completeness of exposition of the chapters varies according to the existence of other good references, but comments and examples are always provided to give the reader some intuitive understanding of the subject.

A Shorter Model Theory

A Shorter Model Theory PDF Author: Wilfrid Hodges
Publisher: Cambridge University Press
ISBN: 9780521587136
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description
This is an up-to-date textbook of model theory taking the reader from first definitions to Morley's theorem and the elementary parts of stability theory. Besides standard results such as the compactness and omitting types theorems, it also describes various links with algebra, including the Skolem-Tarski method of quantifier elimination, model completeness, automorphism groups and omega-categoricity, ultraproducts, O-minimality and structures of finite Morley rank. The material on back-and-forth equivalences, interpretations and zero-one laws can serve as an introduction to applications of model theory in computer science. Each chapter finishes with a brief commentary on the literature and suggestions for further reading. This book will benefit graduate students with an interest in model theory.

Representation Theory of Finite Groups: Algebra and Arithmetic

Representation Theory of Finite Groups: Algebra and Arithmetic PDF Author: Steven H. Weintraub
Publisher: American Mathematical Soc.
ISBN: 0821832220
Category : Mathematics
Languages : en
Pages : 226

Get Book Here

Book Description
``We explore widely in the valley of ordinary representations, and we take the reader over the mountain pass leading to the valley of modular representations, to a point from which (s)he can survey this valley, but we do not attempt to widely explore it. We hope the reader will be sufficiently fascinated by the scenery to further explore both valleys on his/her own.'' --from the Preface Representation theory plays important roles in geometry, algebra, analysis, and mathematical physics. In particular, representation theory has been one of the great tools in the study and classification of finite groups. There are some beautiful results that come from representation theory: Frobenius's Theorem, Burnside's Theorem, Artin's Theorem, Brauer's Theorem--all of which are covered in this textbook. Some seem uninspiring at first, but prove to be quite useful. Others are clearly deep from the outset. And when a group (finite or otherwise) acts on something else (as a set of symmetries, for example), one ends up with a natural representation of the group. This book is an introduction to the representation theory of finite groups from an algebraic point of view, regarding representations as modules over the group algebra. The approach is to develop the requisite algebra in reasonable generality and then to specialize it to the case of group representations. Methods and results particular to group representations, such as characters and induced representations, are developed in depth. Arithmetic comes into play when considering the field of definition of a representation, especially for subfields of the complex numbers. The book has an extensive development of the semisimple case, where the characteristic of the field is zero or is prime to the order of the group, and builds the foundations of the modular case, where the characteristic of the field divides the order of the group. The book assumes only the material of a standard graduate course in algebra. It is suitable as a text for a year-long graduate course. The subject is of interest to students of algebra, number theory and algebraic geometry. The systematic treatment presented here makes the book also valuable as a reference.