Model Systems in Catalysis

Model Systems in Catalysis PDF Author: Robert Rioux
Publisher: Springer Science & Business Media
ISBN: 0387980490
Category : Science
Languages : en
Pages : 531

Get Book

Book Description
This book is an excellent compilation of cutting-edge research in heterogeneous catalysis and related disciplines – surface science, organometallic catalysis, and enzymatic catalysis. In 23 chapters by noted experts, the volume demonstrates varied approaches using model systems and their successes in understanding aspects of heterogeneous catalysis, both metal- and metal oxide-based catalysis in extended single crystal and nanostructured catalytic materials. To truly appreciate the astounding advances of modern heterogeneous catalysis, let us first consider the subject from a historical perspective. Heterogeneous catalysis had its beginnings in England and France with the work of scientists such as Humphrey Davy (1778–1829), Michael Faraday (1791–1867), and Paul Sabatier (1854–1941). Sabatier postulated that surface compounds, si- lar to those familiar in bulk to chemists, were the intermediate species leading to catalytic products. Sabatier proposed, for example, that NiH moieties on a Ni sur- 2 face were able to hydrogenate ethylene, whereas NiH was not. In the USA, Irving Langmuir concluded just the opposite, namely, that chemisorbed surface species are chemically bound to surfaces and are unlike known molecules. These chemisorbed species were the active participants in catalysis. The equilibrium between gas-phase molecules and adsorbed chemisorbed species (yielding an adsorption isotherm) produced a monolayer by simple site-filling kinetics.

Model Systems in Catalysis

Model Systems in Catalysis PDF Author: Robert Rioux
Publisher: Springer Science & Business Media
ISBN: 0387980490
Category : Science
Languages : en
Pages : 531

Get Book

Book Description
This book is an excellent compilation of cutting-edge research in heterogeneous catalysis and related disciplines – surface science, organometallic catalysis, and enzymatic catalysis. In 23 chapters by noted experts, the volume demonstrates varied approaches using model systems and their successes in understanding aspects of heterogeneous catalysis, both metal- and metal oxide-based catalysis in extended single crystal and nanostructured catalytic materials. To truly appreciate the astounding advances of modern heterogeneous catalysis, let us first consider the subject from a historical perspective. Heterogeneous catalysis had its beginnings in England and France with the work of scientists such as Humphrey Davy (1778–1829), Michael Faraday (1791–1867), and Paul Sabatier (1854–1941). Sabatier postulated that surface compounds, si- lar to those familiar in bulk to chemists, were the intermediate species leading to catalytic products. Sabatier proposed, for example, that NiH moieties on a Ni sur- 2 face were able to hydrogenate ethylene, whereas NiH was not. In the USA, Irving Langmuir concluded just the opposite, namely, that chemisorbed surface species are chemically bound to surfaces and are unlike known molecules. These chemisorbed species were the active participants in catalysis. The equilibrium between gas-phase molecules and adsorbed chemisorbed species (yielding an adsorption isotherm) produced a monolayer by simple site-filling kinetics.

Model Systems in Catalysis

Model Systems in Catalysis PDF Author:
Publisher: Springer
ISBN: 9780387981123
Category :
Languages : en
Pages : 531

Get Book

Book Description


Modeling and Simulation of Heterogeneous Catalytic Reactions

Modeling and Simulation of Heterogeneous Catalytic Reactions PDF Author: Olaf Deutschmann
Publisher: John Wiley & Sons
ISBN: 3527639888
Category : Science
Languages : en
Pages : 364

Get Book

Book Description
The Nobel Prize in Chemistry 2007 awarded to Gerhard Ertl for his groundbreaking studies in surface chemistry highlighted the importance of heterogeneous catalysis not only for modern chemical industry but also for environmental protection. Heterogeneous catalysis is seen as one of the key technologies which could solve the challenges associated with the increasing diversification of raw materials and energy sources. It is the decisive step in most chemical industry processes, a major method of reducing pollutant emissions from mobile sources and is present in fuel cells to produce electricity. The increasing power of computers over the last decades has led to modeling and numerical simulation becoming valuable tools in heterogeneous catalysis. This book covers many aspects, from the state-of-the-art in modeling and simulations of heterogeneous catalytic reactions on a molecular level to heterogeneous catalytic reactions from an engineering perspective. This first book on the topic conveys expert knowledge from surface science to both chemists and engineers interested in heterogeneous catalysis. The well-known and international authors comprehensively present many aspects of the wide bridge between surface science and catalytic technologies, including DFT calculations, reaction dynamics on surfaces, Monte Carlo simulations, heterogeneous reaction rates, reactions in porous media, electro-catalytic reactions, technical reactors, and perspectives of chemical and automobile industry on modeling heterogeneous catalysis. The result is a one-stop reference for theoretical and physical chemists, catalysis researchers, materials scientists, chemical engineers, and chemists in industry who would like to broaden their horizon and get a substantial overview on the different aspects of modeling and simulation of heterogeneous catalytic reactions.

Model Systems in Catalysis

Model Systems in Catalysis PDF Author: Robert Rioux
Publisher: Springer
ISBN: 9780387980416
Category : Science
Languages : en
Pages : 526

Get Book

Book Description
This book is an excellent compilation of cutting-edge research in heterogeneous catalysis and related disciplines – surface science, organometallic catalysis, and enzymatic catalysis. In 23 chapters by noted experts, the volume demonstrates varied approaches using model systems and their successes in understanding aspects of heterogeneous catalysis, both metal- and metal oxide-based catalysis in extended single crystal and nanostructured catalytic materials. To truly appreciate the astounding advances of modern heterogeneous catalysis, let us first consider the subject from a historical perspective. Heterogeneous catalysis had its beginnings in England and France with the work of scientists such as Humphrey Davy (1778–1829), Michael Faraday (1791–1867), and Paul Sabatier (1854–1941). Sabatier postulated that surface compounds, si- lar to those familiar in bulk to chemists, were the intermediate species leading to catalytic products. Sabatier proposed, for example, that NiH moieties on a Ni sur- 2 face were able to hydrogenate ethylene, whereas NiH was not. In the USA, Irving Langmuir concluded just the opposite, namely, that chemisorbed surface species are chemically bound to surfaces and are unlike known molecules. These chemisorbed species were the active participants in catalysis. The equilibrium between gas-phase molecules and adsorbed chemisorbed species (yielding an adsorption isotherm) produced a monolayer by simple site-filling kinetics.

Catalytic Kinetics

Catalytic Kinetics PDF Author: Dmitry Yu Murzin
Publisher: Elsevier
ISBN: 0444634630
Category : Technology & Engineering
Languages : en
Pages : 752

Get Book

Book Description
Catalytic Kinetics: Chemistry and Engineering, Second Edition offers a unified view that homogeneous, heterogeneous, and enzymatic catalysis form the cornerstone of practical catalysis. The book has an integrated, cross-disciplinary approach to kinetics and transport phenomena in catalysis, but still recognizes the fundamental differences between different types of catalysis. In addition, the book focuses on a quantitative chemical understanding and links the mathematical approach to kinetics with chemistry. A diverse group of catalysts is covered, including catalysis by acids, organometallic complexes, solid inorganic materials, and enzymes, and this fully updated second edition contains a new chapter on the concepts of cascade catalysis. Finally, expanded content in this edition provides more in-depth discussion, including topics such as organocatalysis, enzymatic kinetics, nonlinear dynamics, solvent effects, nanokinetics, and kinetic isotope effects. Fully revised and expanded, providing the latest developments in catalytic kinetics Bridges the gaps that exist between hetero-, homo- and enzymatic-catalysis Provides necessary tools and new concepts for researchers already working in the field of catalytic kinetics Written by internationally-renowned experts in the field Examples and exercises following each chapter make it suitable as an advanced course book

Catalysis by Materials with Well-Defined Structures

Catalysis by Materials with Well-Defined Structures PDF Author: Zili Wu
Publisher: Academic Press
ISBN: 0128013400
Category : Technology & Engineering
Languages : en
Pages : 392

Get Book

Book Description
Catalysis by Materials with Well-Defined Structures examines the latest developments in the use of model systems in fundamental catalytic science. A team of prominent experts provides authoritative, first-hand information, helping readers better understand heterogeneous catalysis by utilizing model catalysts based on uniformly nanostructured materials. The text addresses topics and issues related to material synthesis, characterization, catalytic reactions, surface chemistry, mechanism, and theoretical modeling, and features a comprehensive review of recent advances in catalytic studies on nanomaterials with well-defined structures, including nanoshaped metals and metal oxides, nanoclusters, and single sites in the areas of heterogeneous thermal catalysis, photocatalysis, and electrocatalysis. Users will find this book to be an invaluable, authoritative source of information for both the surface scientist and the catalysis practitioner Outlines the importance of nanomaterials and their potential as catalysts Provides detailed information on synthesis and characterization of nanomaterials with well-defined structures, relating surface activity to catalytic activity Details how to establish the structure-catalysis relationship and how to reveal the surface chemistry and surface structure of catalysts Offers examples on various in situ characterization instrumental techniques Includes in-depth theoretical modeling utilizing advanced Density Functional Theory (DFT) methods

Chemisorption and Reactivity on Supported Clusters and Thin Films:

Chemisorption and Reactivity on Supported Clusters and Thin Films: PDF Author: R.M. Lambert
Publisher: Springer Science & Business Media
ISBN: 9401589119
Category : Science
Languages : en
Pages : 534

Get Book

Book Description
Heterogeneous catalysis provides the backbone of the world's chemical and oil industries. The innate complexity of practical catalytic systems suggests that useful progress should be achievable by investigating key aspects of catalysis by experimental studies on idealised model systems. Thin films and supported clusters are two promising types of model system that can be used for this purpose, since they mimic important aspects of the properties of practical dispersed catalysts. Similarly, appropriate theoretical studies of chemisorption and surface reaction clusters or extended slab systems can provide valuable information on the factors that underlie bonding and catalytic activity. This volume describes such experimental and theoretical approaches to the surface chemistry and catalytic behaviour of metals, metal oxides and metal/metal oxide systems. An introduction to the principles and main themes of heterogeneous catalysis is followed by detailed accounts of the application of modern experimental and theoretical techniques to fundamental problems. The application of advanced experimental methods is complemented by a full description of theoretical procedures, including Hartree-Fock, density functional and similar techniques. The relative merits of the various approaches are considered and directions for future progress are indicated.

Catalysis Looks to the Future

Catalysis Looks to the Future PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309045843
Category : Science
Languages : en
Pages : 97

Get Book

Book Description
The impact of catalysis on the nation's economy is evidenced by the fact that catalytic technologies generate U.S. sales in excess of $400 billion per year and a net positive balance of trade of $16 billion annually. This book outlines recent accomplishments in the science and technology of catalysis and summarizes important likely challenges and opportunities on the near horizon. It also presents recommendations for investment of financial and human resources by industry, academe, national laboratories, and relevant federal agencies if the nation is to maintain continuing leadership in this fieldâ€"one that is critical to the chemical and petroleum processing industries, essential for energy-efficient means for environmental protection, and vital for the production of a broad range of pharmaceuticals.

From Enzyme Models to Model Enzymes

From Enzyme Models to Model Enzymes PDF Author: Anthony John Kirby
Publisher: Royal Society of Chemistry
ISBN: 0854041753
Category : Science
Languages : en
Pages : 286

Get Book

Book Description
Designing artificial systems with catalytic efficiencies to rival those of natural enzymes is one of the great challenges facing science today. This introduction to the exciting area of artificial enzymes is suitable for both students and more senior researchers.

Computational Modeling of Homogeneous Catalysis

Computational Modeling of Homogeneous Catalysis PDF Author: Feliu Maseras
Publisher: Springer Science & Business Media
ISBN: 0306477181
Category : Science
Languages : en
Pages : 368

Get Book

Book Description
Recent results on a wide array of catalytic processes are collected in this volume. The book illustrates the importance of computational modelling in homogeneous catalysis by providing up-to-date reviews of its application to a variety of reactions of industrial interest.