Model Predictive Vibration Control

Model Predictive Vibration Control PDF Author: Gergely Takács
Publisher: Springer Science & Business Media
ISBN: 1447123328
Category : Technology & Engineering
Languages : en
Pages : 535

Get Book Here

Book Description
Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: · the implementation of computationally efficient algorithms · control strategies in simulation and experiment and · typical hardware requirements for piezoceramics actuated smart structures. The use of a simple laboratory model and inclusion of over 170 illustrations provides readers with clear and methodical explanations, making Model Predictive Vibration Control the ideal support material for graduates, researchers and industrial practitioners with an interest in efficient predictive control to be utilized in active vibration attenuation.

Model Predictive Vibration Control

Model Predictive Vibration Control PDF Author: Gergely Takács
Publisher: Springer Science & Business Media
ISBN: 1447123328
Category : Technology & Engineering
Languages : en
Pages : 535

Get Book Here

Book Description
Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: · the implementation of computationally efficient algorithms · control strategies in simulation and experiment and · typical hardware requirements for piezoceramics actuated smart structures. The use of a simple laboratory model and inclusion of over 170 illustrations provides readers with clear and methodical explanations, making Model Predictive Vibration Control the ideal support material for graduates, researchers and industrial practitioners with an interest in efficient predictive control to be utilized in active vibration attenuation.

Model Predictive Vibration Control

Model Predictive Vibration Control PDF Author: Gergely Takács
Publisher: Springer Science & Business Media
ISBN: 1447123336
Category : Technology & Engineering
Languages : en
Pages : 535

Get Book Here

Book Description
Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: · the implementation of computationally efficient algorithms · control strategies in simulation and experiment and · typical hardware requirements for piezoceramics actuated smart structures. The use of a simple laboratory model and inclusion of over 170 illustrations provides readers with clear and methodical explanations, making Model Predictive Vibration Control the ideal support material for graduates, researchers and industrial practitioners with an interest in efficient predictive control to be utilized in active vibration attenuation.

Distributed Model Predictive Control Made Easy

Distributed Model Predictive Control Made Easy PDF Author: José M. Maestre
Publisher: Springer Science & Business Media
ISBN: 9400770065
Category : Technology & Engineering
Languages : en
Pages : 601

Get Book Here

Book Description
The rapid evolution of computer science, communication, and information technology has enabled the application of control techniques to systems beyond the possibilities of control theory just a decade ago. Critical infrastructures such as electricity, water, traffic and intermodal transport networks are now in the scope of control engineers. The sheer size of such large-scale systems requires the adoption of advanced distributed control approaches. Distributed model predictive control (MPC) is one of the promising control methodologies for control of such systems. This book provides a state-of-the-art overview of distributed MPC approaches, while at the same time making clear directions of research that deserve more attention. The core and rationale of 35 approaches are carefully explained. Moreover, detailed step-by-step algorithmic descriptions of each approach are provided. These features make the book a comprehensive guide both for those seeking an introduction to distributed MPC as well as for those who want to gain a deeper insight in the wide range of distributed MPC techniques available.

Practical Design and Application of Model Predictive Control

Practical Design and Application of Model Predictive Control PDF Author: Nassim Khaled
Publisher: Butterworth-Heinemann
ISBN: 0128139196
Category : Technology & Engineering
Languages : en
Pages : 264

Get Book Here

Book Description
Practical Design and Application of Model Predictive Control is a self-learning resource on how to design, tune and deploy an MPC using MATLAB® and Simulink®. This reference is one of the most detailed publications on how to design and tune MPC controllers. Examples presented range from double-Mass spring system, ship heading and speed control, robustness analysis through Monte-Carlo simulations, photovoltaic optimal control, and energy management of power-split and air-handling control. Readers will also learn how to embed the designed MPC controller in a real-time platform such as Arduino®. The selected problems are nonlinear and challenging, and thus serve as an excellent experimental, dynamic system to show the reader the capability of MPC. The step-by-step solutions of the problems are thoroughly documented to allow the reader to easily replicate the results. Furthermore, the MATLAB® and Simulink® codes for the solutions are available for free download. Readers can connect with the authors through the dedicated website which includes additional free resources at www.practicalmpc.com. - Illustrates how to design, tune and deploy MPC for projects in a quick manner - Demonstrates a variety of applications that are solved using MATLAB® and Simulink® - Bridges the gap in providing a number of realistic problems with very hands-on training - Provides MATLAB® and Simulink® code solutions. This includes nonlinear plant models that the reader can use for other projects and research work - Presents application problems with solutions to help reinforce the information learned

Nonlinear Predictive Control Using Wiener Models

Nonlinear Predictive Control Using Wiener Models PDF Author: Maciej Ławryńczuk
Publisher: Springer Nature
ISBN: 3030838153
Category : Technology & Engineering
Languages : en
Pages : 358

Get Book Here

Book Description
This book presents computationally efficient MPC solutions. The classical model predictive control (MPC) approach to control dynamical systems described by the Wiener model uses an inverse static block to cancel the influence of process nonlinearity. Unfortunately, the model's structure is limited, and it gives poor control quality in the case of an imperfect model and disturbances. An alternative is to use the computationally demanding MPC scheme with on-line nonlinear optimisation repeated at each sampling instant. A linear approximation of the Wiener model or the predicted trajectory is found on-line. As a result, quadratic optimisation tasks are obtained. Furthermore, parameterisation using Laguerre functions is possible to reduce the number of decision variables. Simulation results for ten benchmark processes show that the discussed MPC algorithms lead to excellent control quality. For a neutralisation reactor and a fuel cell, essential advantages of neural Wiener models are demonstrated.

Dynamic Modeling, Predictive Control and Performance Monitoring

Dynamic Modeling, Predictive Control and Performance Monitoring PDF Author: Biao Huang
Publisher: Springer
ISBN: 1848002335
Category : Technology & Engineering
Languages : en
Pages : 249

Get Book Here

Book Description
A typical design procedure for model predictive control or control performance monitoring consists of: 1. identification of a parametric or nonparametric model; 2. derivation of the output predictor from the model; 3. design of the control law or calculation of performance indices according to the predictor. Both design problems need an explicit model form and both require this three-step design procedure. Can this design procedure be simplified? Can an explicit model be avoided? With these questions in mind, the authors eliminate the first and second step of the above design procedure, a “data-driven” approach in the sense that no traditional parametric models are used; hence, the intermediate subspace matrices, which are obtained from the process data and otherwise identified as a first step in the subspace identification methods, are used directly for the designs. Without using an explicit model, the design procedure is simplified and the modelling error caused by parameterization is eliminated.

Model Predictive Control System Design and Implementation Using MATLAB®

Model Predictive Control System Design and Implementation Using MATLAB® PDF Author: Liuping Wang
Publisher: Springer Science & Business Media
ISBN: 1848823312
Category : Technology & Engineering
Languages : en
Pages : 398

Get Book Here

Book Description
Model Predictive Control System Design and Implementation Using MATLAB® proposes methods for design and implementation of MPC systems using basis functions that confer the following advantages: - continuous- and discrete-time MPC problems solved in similar design frameworks; - a parsimonious parametric representation of the control trajectory gives rise to computationally efficient algorithms and better on-line performance; and - a more general discrete-time representation of MPC design that becomes identical to the traditional approach for an appropriate choice of parameters. After the theoretical presentation, coverage is given to three industrial applications. The subject of quadratic programming, often associated with the core optimization algorithms of MPC is also introduced and explained. The technical contents of this book is mainly based on advances in MPC using state-space models and basis functions. This volume includes numerous analytical examples and problems and MATLAB® programs and exercises.

Model Validation and Uncertainty Quantification, Vol. 3

Model Validation and Uncertainty Quantification, Vol. 3 PDF Author: Roland Platz
Publisher: Springer Nature
ISBN: 3031688937
Category :
Languages : en
Pages : 147

Get Book Here

Book Description


Nonlinear Systems and Matrix Analysis - Recent Advances in Theory and Applications

Nonlinear Systems and Matrix Analysis - Recent Advances in Theory and Applications PDF Author: Peter Chen
Publisher: BoD – Books on Demand
ISBN: 1837694494
Category : Mathematics
Languages : en
Pages : 310

Get Book Here

Book Description
Nonlinear system analysis is of interest to engineers, sociologists, physicists, mathematicians, and many other scientists since most systems are inherently nonlinear in nature. In mathematics, a nonlinear system does not satisfy the superposition principle such as in a linear system. Therefore, the theories underlining nonlinear analysis and their applications need to be developed on their own merit. The first section of this book is a collection of examples reporting recent advances in both theory and applications of nonlinear system analysis. The contents of each chapter will provide in-depth foresight to interested readers. As numerical linearization to a set of matrix equations is still the principal method used to solve a nonlinear system, matrix analysis is the topic of the second section of this book. The matrices have invaded practically all areas of mathematics, the experimental and social sciences, engineering, and technology. This volume updates purely mathematical theoretical aspects, and it also presents concrete examples of the wide range of applications of matrix theory in other disciplines.

Model Predictive Control of High Power Converters and Industrial Drives

Model Predictive Control of High Power Converters and Industrial Drives PDF Author: Tobias Geyer
Publisher: John Wiley & Sons
ISBN: 111901087X
Category : Technology & Engineering
Languages : en
Pages : 740

Get Book Here

Book Description
In this original book on model predictive control (MPC) for power electronics, the focus is put on high-power applications with multilevel converters operating at switching frequencies well below 1 kHz, such as medium-voltage drives and modular multi-level converters. Consisting of two main parts, the first offers a detailed review of three-phase power electronics, electrical machines, carrier-based pulse width modulation, optimized pulse patterns, state-of-the art converter control methods and the principle of MPC. The second part is an in-depth treatment of MPC methods that fully exploit the performance potential of high-power converters. These control methods combine the fast control responses of deadbeat control with the optimal steady-state performance of optimized pulse patterns by resolving the antagonism between the two. MPC is expected to evolve into the control method of choice for power electronic systems operating at low pulse numbers with multiple coupled variables and tight operating constraints it. Model Predictive Control of High Power Converters and Industrial Drives will enable to reader to learn how to increase the power capability of the converter, lower the current distortions, reduce the filter size, achieve very fast transient responses and ensure the reliable operation within safe operating area constraints. Targeted at power electronic practitioners working on control-related aspects as well as control engineers, the material is intuitively accessible, and the mathematical formulations are augmented by illustrations, simple examples and a book companion website featuring animations. Readers benefit from a concise and comprehensive treatment of MPC for industrial power electronics, enabling them to understand, implement and advance the field of high-performance MPC schemes.