Author: Y.B. Dibike
Publisher: CRC Press
ISBN: 9789058093561
Category : Science
Languages : en
Pages : 160
Book Description
There has been an explosive growth of methods in recent years for learning (or estimating dependency) from data, where data refers to known samples that are combinations of inputs and corresponding outputs of a given physical system. The main subject addressed in this thesis is model induction from data for the simulation of hydrodynamic processes in the aquatic environment. Firstly, some currently popular artificial neural network architectures are introduced, and it is then argued that these devices can be regarded as domain knowledge incapsulators by applying the method to the generation of wave equations from hydraulic data and showing how the equations of numerical-hydraulic models can, in their turn, be recaptured using artificial neural networks. The book also demonstrates how artificial neural networks can be used to generate numerical operators on non-structured grids for the simulation of hydrodynamic processes in two-dimensional flow systems and a methodology has been derived for developing generic hydrodynamic models using artificial neural network. The book also highlights one other model induction technique, namely that of support vector machine, as an emerging new method with a potential to provide more robust models.
Model Induction from Data
Author: Y.B. Dibike
Publisher: CRC Press
ISBN: 9789058093561
Category : Science
Languages : en
Pages : 160
Book Description
There has been an explosive growth of methods in recent years for learning (or estimating dependency) from data, where data refers to known samples that are combinations of inputs and corresponding outputs of a given physical system. The main subject addressed in this thesis is model induction from data for the simulation of hydrodynamic processes in the aquatic environment. Firstly, some currently popular artificial neural network architectures are introduced, and it is then argued that these devices can be regarded as domain knowledge incapsulators by applying the method to the generation of wave equations from hydraulic data and showing how the equations of numerical-hydraulic models can, in their turn, be recaptured using artificial neural networks. The book also demonstrates how artificial neural networks can be used to generate numerical operators on non-structured grids for the simulation of hydrodynamic processes in two-dimensional flow systems and a methodology has been derived for developing generic hydrodynamic models using artificial neural network. The book also highlights one other model induction technique, namely that of support vector machine, as an emerging new method with a potential to provide more robust models.
Publisher: CRC Press
ISBN: 9789058093561
Category : Science
Languages : en
Pages : 160
Book Description
There has been an explosive growth of methods in recent years for learning (or estimating dependency) from data, where data refers to known samples that are combinations of inputs and corresponding outputs of a given physical system. The main subject addressed in this thesis is model induction from data for the simulation of hydrodynamic processes in the aquatic environment. Firstly, some currently popular artificial neural network architectures are introduced, and it is then argued that these devices can be regarded as domain knowledge incapsulators by applying the method to the generation of wave equations from hydraulic data and showing how the equations of numerical-hydraulic models can, in their turn, be recaptured using artificial neural networks. The book also demonstrates how artificial neural networks can be used to generate numerical operators on non-structured grids for the simulation of hydrodynamic processes in two-dimensional flow systems and a methodology has been derived for developing generic hydrodynamic models using artificial neural network. The book also highlights one other model induction technique, namely that of support vector machine, as an emerging new method with a potential to provide more robust models.
Model and Data Engineering
Author: Ladjel Bellatreche
Publisher: Springer Science & Business Media
ISBN: 3642244424
Category : Computers
Languages : en
Pages : 298
Book Description
This book constitutes the refereed proceedings of the First International Conference on Model and Data Engineering, MEDI 2011, held in Óbidos, Portugal, in September 2011. The 18 revised full papers presented together with 8 short papers and three keynotes were carefully reviewed and selected from 67 submissions. The papers are organized in topical sections on ontology engineering; Web services and security; advanced systems; knowledge management; model specification and verification; and models engineering.
Publisher: Springer Science & Business Media
ISBN: 3642244424
Category : Computers
Languages : en
Pages : 298
Book Description
This book constitutes the refereed proceedings of the First International Conference on Model and Data Engineering, MEDI 2011, held in Óbidos, Portugal, in September 2011. The 18 revised full papers presented together with 8 short papers and three keynotes were carefully reviewed and selected from 67 submissions. The papers are organized in topical sections on ontology engineering; Web services and security; advanced systems; knowledge management; model specification and verification; and models engineering.
Selecting Models from Data
Author: P. Cheeseman
Publisher: Springer Science & Business Media
ISBN: 1461226600
Category : Mathematics
Languages : en
Pages : 475
Book Description
This volume is a selection of papers presented at the Fourth International Workshop on Artificial Intelligence and Statistics held in January 1993. These biennial workshops have succeeded in bringing together researchers from Artificial Intelligence and from Statistics to discuss problems of mutual interest. The exchange has broadened research in both fields and has strongly encour aged interdisciplinary work. The theme ofthe 1993 AI and Statistics workshop was: "Selecting Models from Data". The papers in this volume attest to the diversity of approaches to model selection and to the ubiquity of the problem. Both statistics and artificial intelligence have independently developed approaches to model selection and the corresponding algorithms to implement them. But as these papers make clear, there is a high degree of overlap between the different approaches. In particular, there is agreement that the fundamental problem is the avoidence of "overfitting"-Le., where a model fits the given data very closely, but is a poor predictor for new data; in other words, the model has partly fitted the "noise" in the original data.
Publisher: Springer Science & Business Media
ISBN: 1461226600
Category : Mathematics
Languages : en
Pages : 475
Book Description
This volume is a selection of papers presented at the Fourth International Workshop on Artificial Intelligence and Statistics held in January 1993. These biennial workshops have succeeded in bringing together researchers from Artificial Intelligence and from Statistics to discuss problems of mutual interest. The exchange has broadened research in both fields and has strongly encour aged interdisciplinary work. The theme ofthe 1993 AI and Statistics workshop was: "Selecting Models from Data". The papers in this volume attest to the diversity of approaches to model selection and to the ubiquity of the problem. Both statistics and artificial intelligence have independently developed approaches to model selection and the corresponding algorithms to implement them. But as these papers make clear, there is a high degree of overlap between the different approaches. In particular, there is agreement that the fundamental problem is the avoidence of "overfitting"-Le., where a model fits the given data very closely, but is a poor predictor for new data; in other words, the model has partly fitted the "noise" in the original data.
Data Mining and Machine Learning Applications
Author: Rohit Raja
Publisher: John Wiley & Sons
ISBN: 1119791782
Category : Computers
Languages : en
Pages : 500
Book Description
DATA MINING AND MACHINE LEARNING APPLICATIONS The book elaborates in detail on the current needs of data mining and machine learning and promotes mutual understanding among research in different disciplines, thus facilitating research development and collaboration. Data, the latest currency of today’s world, is the new gold. In this new form of gold, the most beautiful jewels are data analytics and machine learning. Data mining and machine learning are considered interdisciplinary fields. Data mining is a subset of data analytics and machine learning involves the use of algorithms that automatically improve through experience based on data. Massive datasets can be classified and clustered to obtain accurate results. The most common technologies used include classification and clustering methods. Accuracy and error rates are calculated for regression and classification and clustering to find actual results through algorithms like support vector machines and neural networks with forward and backward propagation. Applications include fraud detection, image processing, medical diagnosis, weather prediction, e-commerce and so forth. The book features: A review of the state-of-the-art in data mining and machine learning, A review and description of the learning methods in human-computer interaction, Implementation strategies and future research directions used to meet the design and application requirements of several modern and real-time applications for a long time, The scope and implementation of a majority of data mining and machine learning strategies. A discussion of real-time problems. Audience Industry and academic researchers, scientists, and engineers in information technology, data science and machine and deep learning, as well as artificial intelligence more broadly.
Publisher: John Wiley & Sons
ISBN: 1119791782
Category : Computers
Languages : en
Pages : 500
Book Description
DATA MINING AND MACHINE LEARNING APPLICATIONS The book elaborates in detail on the current needs of data mining and machine learning and promotes mutual understanding among research in different disciplines, thus facilitating research development and collaboration. Data, the latest currency of today’s world, is the new gold. In this new form of gold, the most beautiful jewels are data analytics and machine learning. Data mining and machine learning are considered interdisciplinary fields. Data mining is a subset of data analytics and machine learning involves the use of algorithms that automatically improve through experience based on data. Massive datasets can be classified and clustered to obtain accurate results. The most common technologies used include classification and clustering methods. Accuracy and error rates are calculated for regression and classification and clustering to find actual results through algorithms like support vector machines and neural networks with forward and backward propagation. Applications include fraud detection, image processing, medical diagnosis, weather prediction, e-commerce and so forth. The book features: A review of the state-of-the-art in data mining and machine learning, A review and description of the learning methods in human-computer interaction, Implementation strategies and future research directions used to meet the design and application requirements of several modern and real-time applications for a long time, The scope and implementation of a majority of data mining and machine learning strategies. A discussion of real-time problems. Audience Industry and academic researchers, scientists, and engineers in information technology, data science and machine and deep learning, as well as artificial intelligence more broadly.
Qualitative Research as Stepwise-Deductive Induction
Author: Aksel Tjora
Publisher: Routledge
ISBN: 1351396951
Category : Social Science
Languages : en
Pages : 168
Book Description
This book provides thorough guidance on various forms of data generation and analysis, presenting a model for the research process in which detailed data analysis and generalization through the development of concepts are central. Based on an inductive principle, which begins with raw data and moves towards concepts or theories through incremental deductive feedback loops, the ‘stepwise-deductive induction’ approach advanced by the author focuses on the analysis phase in research. Concentrating on creativity, structuring of analytical work, and collaborative development of generic knowledge, it seeks to enable researchers to extend their insight of a subject area without having personally to study all the data generated throughout a project. A constructive alternative to Grounded Theory, the approach advanced here is centred on qualitative research that aims at developing concepts, models, or theories on basis of a gradual paradigm to reduce complexity. As such, it will appeal to scholars and students across the social sciences with interests in methods and the analysis of qualitative data of various kinds.
Publisher: Routledge
ISBN: 1351396951
Category : Social Science
Languages : en
Pages : 168
Book Description
This book provides thorough guidance on various forms of data generation and analysis, presenting a model for the research process in which detailed data analysis and generalization through the development of concepts are central. Based on an inductive principle, which begins with raw data and moves towards concepts or theories through incremental deductive feedback loops, the ‘stepwise-deductive induction’ approach advanced by the author focuses on the analysis phase in research. Concentrating on creativity, structuring of analytical work, and collaborative development of generic knowledge, it seeks to enable researchers to extend their insight of a subject area without having personally to study all the data generated throughout a project. A constructive alternative to Grounded Theory, the approach advanced here is centred on qualitative research that aims at developing concepts, models, or theories on basis of a gradual paradigm to reduce complexity. As such, it will appeal to scholars and students across the social sciences with interests in methods and the analysis of qualitative data of various kinds.
Learning from Data
Author: Vladimir Cherkassky
Publisher: John Wiley & Sons
ISBN: 9780470140512
Category : Computers
Languages : en
Pages : 560
Book Description
An interdisciplinary framework for learning methodologies—covering statistics, neural networks, and fuzzy logic, this book provides a unified treatment of the principles and methods for learning dependencies from data. It establishes a general conceptual framework in which various learning methods from statistics, neural networks, and fuzzy logic can be applied—showing that a few fundamental principles underlie most new methods being proposed today in statistics, engineering, and computer science. Complete with over one hundred illustrations, case studies, and examples making this an invaluable text.
Publisher: John Wiley & Sons
ISBN: 9780470140512
Category : Computers
Languages : en
Pages : 560
Book Description
An interdisciplinary framework for learning methodologies—covering statistics, neural networks, and fuzzy logic, this book provides a unified treatment of the principles and methods for learning dependencies from data. It establishes a general conceptual framework in which various learning methods from statistics, neural networks, and fuzzy logic can be applied—showing that a few fundamental principles underlie most new methods being proposed today in statistics, engineering, and computer science. Complete with over one hundred illustrations, case studies, and examples making this an invaluable text.
Inductive Logic Programming
Author: Tamas Horváth
Publisher: Springer Science & Business Media
ISBN: 3540201440
Category : Computers
Languages : en
Pages : 411
Book Description
This book constitutes the refereed proceedings of the 13th International Conference on Inductive Logic Programming, ILP 2003, held in Szeged, Hungary in September/October 2003. The 23 revised full papers presented were carefully reviewed and selected from 53 submissions. Among the topics addressed are multirelational data mining, complexity issues, theory revision, clustering, mathematical discovery, relational reinforcement learning, multirelational learning, inductive inference, description logics, grammar systems, and inductive learning.
Publisher: Springer Science & Business Media
ISBN: 3540201440
Category : Computers
Languages : en
Pages : 411
Book Description
This book constitutes the refereed proceedings of the 13th International Conference on Inductive Logic Programming, ILP 2003, held in Szeged, Hungary in September/October 2003. The 23 revised full papers presented were carefully reviewed and selected from 53 submissions. Among the topics addressed are multirelational data mining, complexity issues, theory revision, clustering, mathematical discovery, relational reinforcement learning, multirelational learning, inductive inference, description logics, grammar systems, and inductive learning.
Data Mining
Author: John Wang
Publisher: IGI Global
ISBN: 9781931777834
Category : Computers
Languages : en
Pages : 496
Book Description
"An overview of the multidisciplinary field of data mining, this book focuses specifically on new methodologies and case studies. Included are case studies written by 44 leading scientists and talented young scholars from seven different countries. Topics covered include data mining based on rough sets, the impact of missing data, and mining free text for structure. In addition, the four basic mining operations supported by numerous mining techniques are addressed: predictive model creation supported by supervised induction techniques; link analysis supported by association discovery and sequence discovery techniques; DB segmentation supported by clustering techniques; and deviation detection supported by statistical techniques."
Publisher: IGI Global
ISBN: 9781931777834
Category : Computers
Languages : en
Pages : 496
Book Description
"An overview of the multidisciplinary field of data mining, this book focuses specifically on new methodologies and case studies. Included are case studies written by 44 leading scientists and talented young scholars from seven different countries. Topics covered include data mining based on rough sets, the impact of missing data, and mining free text for structure. In addition, the four basic mining operations supported by numerous mining techniques are addressed: predictive model creation supported by supervised induction techniques; link analysis supported by association discovery and sequence discovery techniques; DB segmentation supported by clustering techniques; and deviation detection supported by statistical techniques."
Data Scientist Diploma (master's level) - City of London College of Economics - 6 months - 100% online / self-paced
Author: City of London College of Economics
Publisher: City of London College of Economics
ISBN:
Category : Education
Languages : en
Pages : 2653
Book Description
Overview This diploma course covers all aspects you need to know to become a successful Data Scientist. Content - Getting Started with Data Science - Data Analytic Thinking - Business Problems and Data Science Solutions - Introduction to Predictive Modeling: From Correlation to Supervised Segmentation - Fitting a Model to Data - Overfitting and Its Avoidance - Similarity, Neighbors, and Clusters Decision Analytic Thinking I: What Is a Good Model? - Visualizing Model Performance - Evidence and Probabilities - Representing and Mining Text - Decision Analytic Thinking II: Toward Analytical Engineering - Other Data Science Tasks and Techniques - Data Science and Business Strategy - Machine Learning: Learning from Data with Your Machine. - And much more Duration 6 months Assessment The assessment will take place on the basis of one assignment at the end of the course. Tell us when you feel ready to take the exam and we’ll send you the assignment questions. Study material The study material will be provided in separate files by email / download link.
Publisher: City of London College of Economics
ISBN:
Category : Education
Languages : en
Pages : 2653
Book Description
Overview This diploma course covers all aspects you need to know to become a successful Data Scientist. Content - Getting Started with Data Science - Data Analytic Thinking - Business Problems and Data Science Solutions - Introduction to Predictive Modeling: From Correlation to Supervised Segmentation - Fitting a Model to Data - Overfitting and Its Avoidance - Similarity, Neighbors, and Clusters Decision Analytic Thinking I: What Is a Good Model? - Visualizing Model Performance - Evidence and Probabilities - Representing and Mining Text - Decision Analytic Thinking II: Toward Analytical Engineering - Other Data Science Tasks and Techniques - Data Science and Business Strategy - Machine Learning: Learning from Data with Your Machine. - And much more Duration 6 months Assessment The assessment will take place on the basis of one assignment at the end of the course. Tell us when you feel ready to take the exam and we’ll send you the assignment questions. Study material The study material will be provided in separate files by email / download link.
Information, Statistics, and Induction in Science
Author: David L. Dowe
Publisher: World Scientific
ISBN: 9814530638
Category : Artificial intelligence
Languages : en
Pages : 423
Book Description
Publisher: World Scientific
ISBN: 9814530638
Category : Artificial intelligence
Languages : en
Pages : 423
Book Description