Model-Based Hypothesis Testing in Biomedicine

Model-Based Hypothesis Testing in Biomedicine PDF Author: Rikard Johansson
Publisher: Linköping University Electronic Press
ISBN: 9176854574
Category :
Languages : en
Pages : 116

Get Book Here

Book Description
The utilization of mathematical tools within biology and medicine has traditionally been less widespread compared to other hard sciences, such as physics and chemistry. However, an increased need for tools such as data processing, bioinformatics, statistics, and mathematical modeling, have emerged due to advancements during the last decades. These advancements are partly due to the development of high-throughput experimental procedures and techniques, which produce ever increasing amounts of data. For all aspects of biology and medicine, these data reveal a high level of inter-connectivity between components, which operate on many levels of control, and with multiple feedbacks both between and within each level of control. However, the availability of these large-scale data is not synonymous to a detailed mechanistic understanding of the underlying system. Rather, a mechanistic understanding is gained first when we construct a hypothesis, and test its predictions experimentally. Identifying interesting predictions that are quantitative in nature, generally requires mathematical modeling. This, in turn, requires that the studied system can be formulated into a mathematical model, such as a series of ordinary differential equations, where different hypotheses can be expressed as precise mathematical expressions that influence the output of the model. Within specific sub-domains of biology, the utilization of mathematical models have had a long tradition, such as the modeling done on electrophysiology by Hodgkin and Huxley in the 1950s. However, it is only in recent years, with the arrival of the field known as systems biology that mathematical modeling has become more commonplace. The somewhat slow adaptation of mathematical modeling in biology is partly due to historical differences in training and terminology, as well as in a lack of awareness of showcases illustrating how modeling can make a difference, or even be required, for a correct analysis of the experimental data. In this work, I provide such showcases by demonstrating the universality and applicability of mathematical modeling and hypothesis testing in three disparate biological systems. In Paper II, we demonstrate how mathematical modeling is necessary for the correct interpretation and analysis of dominant negative inhibition data in insulin signaling in primary human adipocytes. In Paper III, we use modeling to determine transport rates across the nuclear membrane in yeast cells, and we show how this technique is superior to traditional curve-fitting methods. We also demonstrate the issue of population heterogeneity and the need to account for individual differences between cells and the population at large. In Paper IV, we use mathematical modeling to reject three hypotheses concerning the phenomenon of facilitation in pyramidal nerve cells in rats and mice. We also show how one surviving hypothesis can explain all data and adequately describe independent validation data. Finally, in Paper I, we develop a method for model selection and discrimination using parametric bootstrapping and the combination of several different empirical distributions of traditional statistical tests. We show how the empirical log-likelihood ratio test is the best combination of two tests and how this can be used, not only for model selection, but also for model discrimination. In conclusion, mathematical modeling is a valuable tool for analyzing data and testing biological hypotheses, regardless of the underlying biological system. Further development of modeling methods and applications are therefore important since these will in all likelihood play a crucial role in all future aspects of biology and medicine, especially in dealing with the burden of increasing amounts of data that is made available with new experimental techniques. Användandet av matematiska verktyg har inom biologi och medicin traditionellt sett varit mindre utbredd jämfört med andra ämnen inom naturvetenskapen, såsom fysik och kemi. Ett ökat behov av verktyg som databehandling, bioinformatik, statistik och matematisk modellering har trätt fram tack vare framsteg under de senaste decennierna. Dessa framsteg är delvis ett resultat av utvecklingen av storskaliga datainsamlingstekniker. Inom alla områden av biologi och medicin så har dessa data avslöjat en hög nivå av interkonnektivitet mellan komponenter, verksamma på många kontrollnivåer och med flera återkopplingar både mellan och inom varje nivå av kontroll. Tillgång till storskaliga data är emellertid inte synonymt med en detaljerad mekanistisk förståelse för det underliggande systemet. Snarare uppnås en mekanisk förståelse först när vi bygger en hypotes vars prediktioner vi kan testa experimentellt. Att identifiera intressanta prediktioner som är av kvantitativ natur, kräver generellt sett matematisk modellering. Detta kräver i sin tur att det studerade systemet kan formuleras till en matematisk modell, såsom en serie ordinära differentialekvationer, där olika hypoteser kan uttryckas som precisa matematiska uttryck som påverkar modellens output. Inom vissa delområden av biologin har utnyttjandet av matematiska modeller haft en lång tradition, såsom den modellering gjord inom elektrofysiologi av Hodgkin och Huxley på 1950?talet. Det är emellertid just på senare år, med ankomsten av fältet systembiologi, som matematisk modellering har blivit ett vanligt inslag. Den något långsamma adapteringen av matematisk modellering inom biologi är bl.a. grundad i historiska skillnader i träning och terminologi, samt brist på medvetenhet om exempel som illustrerar hur modellering kan göra skillnad och faktiskt ofta är ett krav för en korrekt analys av experimentella data. I detta arbete tillhandahåller jag sådana exempel och demonstrerar den matematiska modelleringens och hypotestestningens allmängiltighet och tillämpbarhet i tre olika biologiska system. I Arbete II visar vi hur matematisk modellering är nödvändig för en korrekt tolkning och analys av dominant-negativ-inhiberingsdata vid insulinsignalering i primära humana adipocyter. I Arbete III använder vi modellering för att bestämma transporthastigheter över cellkärnmembranet i jästceller, och vi visar hur denna teknik är överlägsen traditionella kurvpassningsmetoder. Vi demonstrerar också frågan om populationsheterogenitet och behovet av att ta hänsyn till individuella skillnader mellan celler och befolkningen som helhet. I Arbete IV använder vi matematisk modellering för att förkasta tre hypoteser om hur fenomenet facilitering uppstår i pyramidala nervceller hos råttor och möss. Vi visar också hur en överlevande hypotes kan beskriva all data, inklusive oberoende valideringsdata. Slutligen utvecklar vi i Arbete I en metod för modellselektion och modelldiskriminering med hjälp av parametrisk ”bootstrapping” samt kombinationen av olika empiriska fördelningar av traditionella statistiska tester. Vi visar hur det empiriska ”log-likelihood-ratio-testet” är den bästa kombinationen av två tester och hur testet är applicerbart, inte bara för modellselektion, utan också för modelldiskriminering. Sammanfattningsvis är matematisk modellering ett värdefullt verktyg för att analysera data och testa biologiska hypoteser, oavsett underliggande biologiskt system. Vidare utveckling av modelleringsmetoder och tillämpningar är därför viktigt eftersom dessa sannolikt kommer att spela en avgörande roll i framtiden för biologi och medicin, särskilt när det gäller att hantera belastningen från ökande datamängder som blir tillgänglig med nya experimentella tekniker.

Model-Based Hypothesis Testing in Biomedicine

Model-Based Hypothesis Testing in Biomedicine PDF Author: Rikard Johansson
Publisher: Linköping University Electronic Press
ISBN: 9176854574
Category :
Languages : en
Pages : 116

Get Book Here

Book Description
The utilization of mathematical tools within biology and medicine has traditionally been less widespread compared to other hard sciences, such as physics and chemistry. However, an increased need for tools such as data processing, bioinformatics, statistics, and mathematical modeling, have emerged due to advancements during the last decades. These advancements are partly due to the development of high-throughput experimental procedures and techniques, which produce ever increasing amounts of data. For all aspects of biology and medicine, these data reveal a high level of inter-connectivity between components, which operate on many levels of control, and with multiple feedbacks both between and within each level of control. However, the availability of these large-scale data is not synonymous to a detailed mechanistic understanding of the underlying system. Rather, a mechanistic understanding is gained first when we construct a hypothesis, and test its predictions experimentally. Identifying interesting predictions that are quantitative in nature, generally requires mathematical modeling. This, in turn, requires that the studied system can be formulated into a mathematical model, such as a series of ordinary differential equations, where different hypotheses can be expressed as precise mathematical expressions that influence the output of the model. Within specific sub-domains of biology, the utilization of mathematical models have had a long tradition, such as the modeling done on electrophysiology by Hodgkin and Huxley in the 1950s. However, it is only in recent years, with the arrival of the field known as systems biology that mathematical modeling has become more commonplace. The somewhat slow adaptation of mathematical modeling in biology is partly due to historical differences in training and terminology, as well as in a lack of awareness of showcases illustrating how modeling can make a difference, or even be required, for a correct analysis of the experimental data. In this work, I provide such showcases by demonstrating the universality and applicability of mathematical modeling and hypothesis testing in three disparate biological systems. In Paper II, we demonstrate how mathematical modeling is necessary for the correct interpretation and analysis of dominant negative inhibition data in insulin signaling in primary human adipocytes. In Paper III, we use modeling to determine transport rates across the nuclear membrane in yeast cells, and we show how this technique is superior to traditional curve-fitting methods. We also demonstrate the issue of population heterogeneity and the need to account for individual differences between cells and the population at large. In Paper IV, we use mathematical modeling to reject three hypotheses concerning the phenomenon of facilitation in pyramidal nerve cells in rats and mice. We also show how one surviving hypothesis can explain all data and adequately describe independent validation data. Finally, in Paper I, we develop a method for model selection and discrimination using parametric bootstrapping and the combination of several different empirical distributions of traditional statistical tests. We show how the empirical log-likelihood ratio test is the best combination of two tests and how this can be used, not only for model selection, but also for model discrimination. In conclusion, mathematical modeling is a valuable tool for analyzing data and testing biological hypotheses, regardless of the underlying biological system. Further development of modeling methods and applications are therefore important since these will in all likelihood play a crucial role in all future aspects of biology and medicine, especially in dealing with the burden of increasing amounts of data that is made available with new experimental techniques. Användandet av matematiska verktyg har inom biologi och medicin traditionellt sett varit mindre utbredd jämfört med andra ämnen inom naturvetenskapen, såsom fysik och kemi. Ett ökat behov av verktyg som databehandling, bioinformatik, statistik och matematisk modellering har trätt fram tack vare framsteg under de senaste decennierna. Dessa framsteg är delvis ett resultat av utvecklingen av storskaliga datainsamlingstekniker. Inom alla områden av biologi och medicin så har dessa data avslöjat en hög nivå av interkonnektivitet mellan komponenter, verksamma på många kontrollnivåer och med flera återkopplingar både mellan och inom varje nivå av kontroll. Tillgång till storskaliga data är emellertid inte synonymt med en detaljerad mekanistisk förståelse för det underliggande systemet. Snarare uppnås en mekanisk förståelse först när vi bygger en hypotes vars prediktioner vi kan testa experimentellt. Att identifiera intressanta prediktioner som är av kvantitativ natur, kräver generellt sett matematisk modellering. Detta kräver i sin tur att det studerade systemet kan formuleras till en matematisk modell, såsom en serie ordinära differentialekvationer, där olika hypoteser kan uttryckas som precisa matematiska uttryck som påverkar modellens output. Inom vissa delområden av biologin har utnyttjandet av matematiska modeller haft en lång tradition, såsom den modellering gjord inom elektrofysiologi av Hodgkin och Huxley på 1950?talet. Det är emellertid just på senare år, med ankomsten av fältet systembiologi, som matematisk modellering har blivit ett vanligt inslag. Den något långsamma adapteringen av matematisk modellering inom biologi är bl.a. grundad i historiska skillnader i träning och terminologi, samt brist på medvetenhet om exempel som illustrerar hur modellering kan göra skillnad och faktiskt ofta är ett krav för en korrekt analys av experimentella data. I detta arbete tillhandahåller jag sådana exempel och demonstrerar den matematiska modelleringens och hypotestestningens allmängiltighet och tillämpbarhet i tre olika biologiska system. I Arbete II visar vi hur matematisk modellering är nödvändig för en korrekt tolkning och analys av dominant-negativ-inhiberingsdata vid insulinsignalering i primära humana adipocyter. I Arbete III använder vi modellering för att bestämma transporthastigheter över cellkärnmembranet i jästceller, och vi visar hur denna teknik är överlägsen traditionella kurvpassningsmetoder. Vi demonstrerar också frågan om populationsheterogenitet och behovet av att ta hänsyn till individuella skillnader mellan celler och befolkningen som helhet. I Arbete IV använder vi matematisk modellering för att förkasta tre hypoteser om hur fenomenet facilitering uppstår i pyramidala nervceller hos råttor och möss. Vi visar också hur en överlevande hypotes kan beskriva all data, inklusive oberoende valideringsdata. Slutligen utvecklar vi i Arbete I en metod för modellselektion och modelldiskriminering med hjälp av parametrisk ”bootstrapping” samt kombinationen av olika empiriska fördelningar av traditionella statistiska tester. Vi visar hur det empiriska ”log-likelihood-ratio-testet” är den bästa kombinationen av två tester och hur testet är applicerbart, inte bara för modellselektion, utan också för modelldiskriminering. Sammanfattningsvis är matematisk modellering ett värdefullt verktyg för att analysera data och testa biologiska hypoteser, oavsett underliggande biologiskt system. Vidare utveckling av modelleringsmetoder och tillämpningar är därför viktigt eftersom dessa sannolikt kommer att spela en avgörande roll i framtiden för biologi och medicin, särskilt när det gäller att hantera belastningen från ökande datamängder som blir tillgänglig med nya experimentella tekniker.

Applied Mathematics for the Analysis of Biomedical Data

Applied Mathematics for the Analysis of Biomedical Data PDF Author: Peter J. Costa
Publisher: John Wiley & Sons
ISBN: 1119269490
Category : Mathematics
Languages : en
Pages : 446

Get Book Here

Book Description
Features a practical approach to the analysis of biomedical data via mathematical methods and provides a MATLAB® toolbox for the collection, visualization, and evaluation of experimental and real-life data Applied Mathematics for the Analysis of Biomedical Data: Models, Methods, and MATLAB® presents a practical approach to the task that biological scientists face when analyzing data. The primary focus is on the application of mathematical models and scientific computing methods to provide insight into the behavior of biological systems. The author draws upon his experience in academia, industry, and government–sponsored research as well as his expertise in MATLAB to produce a suite of computer programs with applications in epidemiology, machine learning, and biostatistics. These models are derived from real–world data and concerns. Among the topics included are the spread of infectious disease (HIV/AIDS) through a population, statistical pattern recognition methods to determine the presence of disease in a diagnostic sample, and the fundamentals of hypothesis testing. In addition, the author uses his professional experiences to present unique case studies whose analyses provide detailed insights into biological systems and the problems inherent in their examination. The book contains a well-developed and tested set of MATLAB functions that act as a general toolbox for practitioners of quantitative biology and biostatistics. This combination of MATLAB functions and practical tips amplifies the book’s technical merit and value to industry professionals. Through numerous examples and sample code blocks, the book provides readers with illustrations of MATLAB programming. Moreover, the associated toolbox permits readers to engage in the process of data analysis without needing to delve deeply into the mathematical theory. This gives an accessible view of the material for readers with varied backgrounds. As a result, the book provides a streamlined framework for the development of mathematical models, algorithms, and the corresponding computer code. In addition, the book features: Real–world computational procedures that can be readily applied to similar problems without the need for keen mathematical acumen Clear delineation of topics to accelerate access to data analysis Access to a book companion website containing the MATLAB toolbox created for this book, as well as a Solutions Manual with solutions to selected exercises Applied Mathematics for the Analysis of Biomedical Data: Models, Methods, and MATLAB® is an excellent textbook for students in mathematics, biostatistics, the life and social sciences, and quantitative, computational, and mathematical biology. This book is also an ideal reference for industrial scientists, biostatisticians, product development scientists, and practitioners who use mathematical models of biological systems in biomedical research, medical device development, and pharmaceutical submissions.

Biostatistics for Medical and Biomedical Practitioners

Biostatistics for Medical and Biomedical Practitioners PDF Author: Julien I. E. Hoffman
Publisher: Academic Press
ISBN: 0128026073
Category : Mathematics
Languages : en
Pages : 772

Get Book Here

Book Description
Biostatistics for Practitioners: An Interpretative Guide for Medicine and Biology deals with several aspects of statistics that are indispensable for researchers and students across the biomedical sciences. The book features a step-by-step approach, focusing on standard statistical tests, as well as discussions of the most common errors. The book is based on the author's 40+ years of teaching statistics to medical fellows and biomedical researchers across a wide range of fields. - Discusses how to use the standard statistical tests in the biomedical field, as well as how to make statistical inferences (t test, ANOVA, regression etc.) - Includes non-standards tests, including equivalence or non-inferiority testing, extreme value statistics, cross-over tests, and simple time series procedures such as the runs test and Cusums - Introduces procedures such as multiple regression, Poisson regression, meta-analysis and resampling statistics, and provides references for further studies

Methods in Biomedical Informatics

Methods in Biomedical Informatics PDF Author: Indra Neil Sarkar
Publisher: Academic Press
ISBN: 0124016847
Category : Computers
Languages : en
Pages : 589

Get Book Here

Book Description
Beginning with a survey of fundamental concepts associated with data integration, knowledge representation, and hypothesis generation from heterogeneous data sets, Methods in Biomedical Informatics provides a practical survey of methodologies used in biological, clinical, and public health contexts. These concepts provide the foundation for more advanced topics like information retrieval, natural language processing, Bayesian modeling, and learning classifier systems. The survey of topics then concludes with an exposition of essential methods associated with engineering, personalized medicine, and linking of genomic and clinical data. Within an overall context of the scientific method, Methods in Biomedical Informatics provides a practical coverage of topics that is specifically designed for: (1) domain experts seeking an understanding of biomedical informatics approaches for addressing specific methodological needs; or (2) biomedical informaticians seeking an approachable overview of methodologies that can be used in scenarios germane to biomedical research. - Contributors represent leading biomedical informatics experts: individuals who have demonstrated effective use of biomedical informatics methodologies in the real-world, high-quality biomedical applications - Material is presented as a balance between foundational coverage of core topics in biomedical informatics with practical "in-the-trenches" scenarios. - Contains appendices that function as primers on: (1) Unix; (2) Ruby; (3) Databases; and (4) Web Services.

Empirical Likelihood Methods in Biomedicine and Health

Empirical Likelihood Methods in Biomedicine and Health PDF Author: Albert Vexler
Publisher: CRC Press
ISBN: 1351001507
Category : Mathematics
Languages : en
Pages : 149

Get Book Here

Book Description
Empirical Likelihood Methods in Biomedicine and Health provides a compendium of nonparametric likelihood statistical techniques in the perspective of health research applications. It includes detailed descriptions of the theoretical underpinnings of recently developed empirical likelihood-based methods. The emphasis throughout is on the application of the methods to the health sciences, with worked examples using real data. Provides a systematic overview of novel empirical likelihood techniques. Presents a good balance of theory, methods, and applications. Features detailed worked examples to illustrate the application of the methods. Includes R code for implementation. The book material is attractive and easily understandable to scientists who are new to the research area and may attract statisticians interested in learning more about advanced nonparametric topics including various modern empirical likelihood methods. The book can be used by graduate students majoring in biostatistics, or in a related field, particularly for those who are interested in nonparametric methods with direct applications in Biomedicine.

Statistical Methods for the Analysis of Biomedical Data

Statistical Methods for the Analysis of Biomedical Data PDF Author: Robert F. Woolson
Publisher: John Wiley & Sons
ISBN: 111803130X
Category : Medical
Languages : en
Pages : 714

Get Book Here

Book Description
Dieser Band behandelt eine Reihe statistischer Themen, die bei der Analyse biologischer und medizinischer Daten allgemein Anwendung finden. Diese 2. Auflage wurde komplett überarbeitet, aktualisiert und erweitert. Einige Kapitel sind neu hinzugekommen, u.a. zur multiplen linearen Regression in der biomedizinischen Forschung. Der Stoff ist so gegliedert, dass der Leser den Text unabhängig von der jeweiligen statistischen Methode leicht nach Problemstellungen durchsuchen kann. Mit zahlreichen durchgearbeiteten Beispielen, die detaillierte Lösungsangaben zu Problemen aus der Praxis liefern.

Innovative Strategies, Statistical Solutions and Simulations for Modern Clinical Trials

Innovative Strategies, Statistical Solutions and Simulations for Modern Clinical Trials PDF Author: Mark Chang
Publisher: CRC Press
ISBN: 1351214535
Category : Medical
Languages : en
Pages : 376

Get Book Here

Book Description
"This is truly an outstanding book. [It] brings together all of the latest research in clinical trials methodology and how it can be applied to drug development.... Chang et al provide applications to industry-supported trials. This will allow statisticians in the industry community to take these methods seriously." Jay Herson, Johns Hopkins University The pharmaceutical industry's approach to drug discovery and development has rapidly transformed in the last decade from the more traditional Research and Development (R & D) approach to a more innovative approach in which strategies are employed to compress and optimize the clinical development plan and associated timelines. However, these strategies are generally being considered on an individual trial basis and not as part of a fully integrated overall development program. Such optimization at the trial level is somewhat near-sighted and does not ensure cost, time, or development efficiency of the overall program. This book seeks to address this imbalance by establishing a statistical framework for overall/global clinical development optimization and providing tactics and techniques to support such optimization, including clinical trial simulations. Provides a statistical framework for achieve global optimization in each phase of the drug development process. Describes specific techniques to support optimization including adaptive designs, precision medicine, survival-endpoints, dose finding and multiple testing. Gives practical approaches to handling missing data in clinical trials using SAS. Looks at key controversial issues from both a clinical and statistical perspective. Presents a generous number of case studies from multiple therapeutic areas that help motivate and illustrate the statistical methods introduced in the book. Puts great emphasis on software implementation of the statistical methods with multiple examples of software code (both SAS and R). It is important for statisticians to possess a deep knowledge of the drug development process beyond statistical considerations. For these reasons, this book incorporates both statistical and "clinical/medical" perspectives.

Modeling in Computational Biology and Biomedicine

Modeling in Computational Biology and Biomedicine PDF Author: Frédéric Cazals
Publisher: Springer Science & Business Media
ISBN: 364231208X
Category : Mathematics
Languages : en
Pages : 333

Get Book Here

Book Description
Computational biology, mathematical biology, biology and biomedicine are currently undergoing spectacular progresses due to a synergy between technological advances and inputs from physics, chemistry, mathematics, statistics and computer science. The goal of this book is to evidence this synergy by describing selected developments in the following fields: bioinformatics, biomedicine and neuroscience. This work is unique in two respects - first, by the variety and scales of systems studied and second, by its presentation: Each chapter provides the biological or medical context, follows up with mathematical or algorithmic developments triggered by a specific problem and concludes with one or two success stories, namely new insights gained thanks to these methodological developments. It also highlights some unsolved and outstanding theoretical questions, with a potentially high impact on these disciplines. Two communities will be particularly interested in this book. The first one is the vast community of applied mathematicians and computer scientists, whose interests should be captured by the added value generated by the application of advanced concepts and algorithms to challenging biological or medical problems. The second is the equally vast community of biologists. Whether scientists or engineers, they will find in this book a clear and self-contained account of concepts and techniques from mathematics and computer science, together with success stories on their favorite systems. The variety of systems described represents a panoply of complementary conceptual tools. On a practical level, the resources listed at the end of each chapter (databases, software) offer invaluable support for getting started on a specific topic in the fields of biomedicine, bioinformatics and neuroscience.

Natural and Artificial Computation for Biomedicine and Neuroscience

Natural and Artificial Computation for Biomedicine and Neuroscience PDF Author: José Manuel Ferrández Vicente
Publisher: Springer
ISBN: 331959740X
Category : Computers
Languages : en
Pages : 490

Get Book Here

Book Description
The two volumes LNCS 10337 and 10338 constitute the proceedings of the International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2017, held in Corunna, Spain, in June 2017. The total of 102 full papers was carefully reviewed and selected from 194 submissions during two rounds of reviewing and improvement. The papers are organized in two volumes, one on natural and artificial computation for biomedicine and neuroscience, addressing topics such as theoretical neural computation; models; natural computing in bioinformatics; physiological computing in affective smart environments; emotions; as well as signal processing and machine learning applied to biomedical and neuroscience applications. The second volume deals with biomedical applications, based on natural and artificial computing and addresses topics such as biomedical applications; mobile brain computer interaction; human robot interaction; deep learning; machine learning applied to big data analysis; computational intelligence in data coding and transmission; and applications.

Small Clinical Trials

Small Clinical Trials PDF Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309171148
Category : Medical
Languages : en
Pages : 221

Get Book Here

Book Description
Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.