Author: Alex A. Freitas
Publisher: Springer Science & Business Media
ISBN: 0792380487
Category : Computers
Languages : en
Pages : 226
Book Description
Mining Very Large Databases with Parallel Processing addresses the problem of large-scale data mining. It is an interdisciplinary text, describing advances in the integration of three computer science areas, namely `intelligent' (machine learning-based) data mining techniques, relational databases and parallel processing. The basic idea is to use concepts and techniques of the latter two areas - particularly parallel processing - to speed up and scale up data mining algorithms. The book is divided into three parts. The first part presents a comprehensive review of intelligent data mining techniques such as rule induction, instance-based learning, neural networks and genetic algorithms. Likewise, the second part presents a comprehensive review of parallel processing and parallel databases. Each of these parts includes an overview of commercially-available, state-of-the-art tools. The third part deals with the application of parallel processing to data mining. The emphasis is on finding generic, cost-effective solutions for realistic data volumes. Two parallel computational environments are discussed, the first excluding the use of commercial-strength DBMS, and the second using parallel DBMS servers. It is assumed that the reader has a knowledge roughly equivalent to a first degree (BSc) in accurate sciences, so that (s)he is reasonably familiar with basic concepts of statistics and computer science. The primary audience for Mining Very Large Databases with Parallel Processing is industry data miners and practitioners in general, who would like to apply intelligent data mining techniques to large amounts of data. The book will also be of interest to academic researchers and postgraduate students, particularly database researchers, interested in advanced, intelligent database applications, and artificial intelligence researchers interested in industrial, real-world applications of machine learning.
Mining Very Large Databases with Parallel Processing
Author: Alex A. Freitas
Publisher: Springer Science & Business Media
ISBN: 0792380487
Category : Computers
Languages : en
Pages : 226
Book Description
Mining Very Large Databases with Parallel Processing addresses the problem of large-scale data mining. It is an interdisciplinary text, describing advances in the integration of three computer science areas, namely `intelligent' (machine learning-based) data mining techniques, relational databases and parallel processing. The basic idea is to use concepts and techniques of the latter two areas - particularly parallel processing - to speed up and scale up data mining algorithms. The book is divided into three parts. The first part presents a comprehensive review of intelligent data mining techniques such as rule induction, instance-based learning, neural networks and genetic algorithms. Likewise, the second part presents a comprehensive review of parallel processing and parallel databases. Each of these parts includes an overview of commercially-available, state-of-the-art tools. The third part deals with the application of parallel processing to data mining. The emphasis is on finding generic, cost-effective solutions for realistic data volumes. Two parallel computational environments are discussed, the first excluding the use of commercial-strength DBMS, and the second using parallel DBMS servers. It is assumed that the reader has a knowledge roughly equivalent to a first degree (BSc) in accurate sciences, so that (s)he is reasonably familiar with basic concepts of statistics and computer science. The primary audience for Mining Very Large Databases with Parallel Processing is industry data miners and practitioners in general, who would like to apply intelligent data mining techniques to large amounts of data. The book will also be of interest to academic researchers and postgraduate students, particularly database researchers, interested in advanced, intelligent database applications, and artificial intelligence researchers interested in industrial, real-world applications of machine learning.
Publisher: Springer Science & Business Media
ISBN: 0792380487
Category : Computers
Languages : en
Pages : 226
Book Description
Mining Very Large Databases with Parallel Processing addresses the problem of large-scale data mining. It is an interdisciplinary text, describing advances in the integration of three computer science areas, namely `intelligent' (machine learning-based) data mining techniques, relational databases and parallel processing. The basic idea is to use concepts and techniques of the latter two areas - particularly parallel processing - to speed up and scale up data mining algorithms. The book is divided into three parts. The first part presents a comprehensive review of intelligent data mining techniques such as rule induction, instance-based learning, neural networks and genetic algorithms. Likewise, the second part presents a comprehensive review of parallel processing and parallel databases. Each of these parts includes an overview of commercially-available, state-of-the-art tools. The third part deals with the application of parallel processing to data mining. The emphasis is on finding generic, cost-effective solutions for realistic data volumes. Two parallel computational environments are discussed, the first excluding the use of commercial-strength DBMS, and the second using parallel DBMS servers. It is assumed that the reader has a knowledge roughly equivalent to a first degree (BSc) in accurate sciences, so that (s)he is reasonably familiar with basic concepts of statistics and computer science. The primary audience for Mining Very Large Databases with Parallel Processing is industry data miners and practitioners in general, who would like to apply intelligent data mining techniques to large amounts of data. The book will also be of interest to academic researchers and postgraduate students, particularly database researchers, interested in advanced, intelligent database applications, and artificial intelligence researchers interested in industrial, real-world applications of machine learning.
Mining of Massive Datasets
Author: Jure Leskovec
Publisher: Cambridge University Press
ISBN: 1107077230
Category : Computers
Languages : en
Pages : 480
Book Description
Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.
Publisher: Cambridge University Press
ISBN: 1107077230
Category : Computers
Languages : en
Pages : 480
Book Description
Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.
Mining Very Large Databases with Parallel Processing
Author: Alex A. Freitas
Publisher: Springer Science & Business Media
ISBN: 1461555213
Category : Computers
Languages : en
Pages : 211
Book Description
Mining Very Large Databases with Parallel Processing addresses the problem of large-scale data mining. It is an interdisciplinary text, describing advances in the integration of three computer science areas, namely `intelligent' (machine learning-based) data mining techniques, relational databases and parallel processing. The basic idea is to use concepts and techniques of the latter two areas - particularly parallel processing - to speed up and scale up data mining algorithms. The book is divided into three parts. The first part presents a comprehensive review of intelligent data mining techniques such as rule induction, instance-based learning, neural networks and genetic algorithms. Likewise, the second part presents a comprehensive review of parallel processing and parallel databases. Each of these parts includes an overview of commercially-available, state-of-the-art tools. The third part deals with the application of parallel processing to data mining. The emphasis is on finding generic, cost-effective solutions for realistic data volumes. Two parallel computational environments are discussed, the first excluding the use of commercial-strength DBMS, and the second using parallel DBMS servers. It is assumed that the reader has a knowledge roughly equivalent to a first degree (BSc) in accurate sciences, so that (s)he is reasonably familiar with basic concepts of statistics and computer science. The primary audience for Mining Very Large Databases with Parallel Processing is industry data miners and practitioners in general, who would like to apply intelligent data mining techniques to large amounts of data. The book will also be of interest to academic researchers and postgraduate students, particularly database researchers, interested in advanced, intelligent database applications, and artificial intelligence researchers interested in industrial, real-world applications of machine learning.
Publisher: Springer Science & Business Media
ISBN: 1461555213
Category : Computers
Languages : en
Pages : 211
Book Description
Mining Very Large Databases with Parallel Processing addresses the problem of large-scale data mining. It is an interdisciplinary text, describing advances in the integration of three computer science areas, namely `intelligent' (machine learning-based) data mining techniques, relational databases and parallel processing. The basic idea is to use concepts and techniques of the latter two areas - particularly parallel processing - to speed up and scale up data mining algorithms. The book is divided into three parts. The first part presents a comprehensive review of intelligent data mining techniques such as rule induction, instance-based learning, neural networks and genetic algorithms. Likewise, the second part presents a comprehensive review of parallel processing and parallel databases. Each of these parts includes an overview of commercially-available, state-of-the-art tools. The third part deals with the application of parallel processing to data mining. The emphasis is on finding generic, cost-effective solutions for realistic data volumes. Two parallel computational environments are discussed, the first excluding the use of commercial-strength DBMS, and the second using parallel DBMS servers. It is assumed that the reader has a knowledge roughly equivalent to a first degree (BSc) in accurate sciences, so that (s)he is reasonably familiar with basic concepts of statistics and computer science. The primary audience for Mining Very Large Databases with Parallel Processing is industry data miners and practitioners in general, who would like to apply intelligent data mining techniques to large amounts of data. The book will also be of interest to academic researchers and postgraduate students, particularly database researchers, interested in advanced, intelligent database applications, and artificial intelligence researchers interested in industrial, real-world applications of machine learning.
Parallel and Distributed Processing
Author: Jose Rolim
Publisher: Springer
ISBN: 3540455914
Category : Computers
Languages : en
Pages : 667
Book Description
This volume contains the proceedings from the workshops held in conjunction with the IEEE International Parallel and Distributed Processing Symposium, IPDPS 2000, on 1-5 May 2000 in Cancun, Mexico. The workshopsprovidea forum for bringing together researchers,practiti- ers, and designers from various backgrounds to discuss the state of the art in parallelism.Theyfocusondi erentaspectsofparallelism,fromruntimesystems to formal methods, from optics to irregular problems, from biology to networks of personal computers, from embedded systems to programming environments; the following workshops are represented in this volume: { Workshop on Personal Computer Based Networks of Workstations { Workshop on Advances in Parallel and Distributed Computational Models { Workshop on Par. and Dist. Comp. in Image, Video, and Multimedia { Workshop on High-Level Parallel Prog. Models and Supportive Env. { Workshop on High Performance Data Mining { Workshop on Solving Irregularly Structured Problems in Parallel { Workshop on Java for Parallel and Distributed Computing { WorkshoponBiologicallyInspiredSolutionsto ParallelProcessingProblems { Workshop on Parallel and Distributed Real-Time Systems { Workshop on Embedded HPC Systems and Applications { Recon gurable Architectures Workshop { Workshop on Formal Methods for Parallel Programming { Workshop on Optics and Computer Science { Workshop on Run-Time Systems for Parallel Programming { Workshop on Fault-Tolerant Parallel and Distributed Systems All papers published in the workshops proceedings were selected by the p- gram committee on the basis of referee reports. Each paper was reviewed by independent referees who judged the papers for originality, quality, and cons- tency with the themes of the workshops.
Publisher: Springer
ISBN: 3540455914
Category : Computers
Languages : en
Pages : 667
Book Description
This volume contains the proceedings from the workshops held in conjunction with the IEEE International Parallel and Distributed Processing Symposium, IPDPS 2000, on 1-5 May 2000 in Cancun, Mexico. The workshopsprovidea forum for bringing together researchers,practiti- ers, and designers from various backgrounds to discuss the state of the art in parallelism.Theyfocusondi erentaspectsofparallelism,fromruntimesystems to formal methods, from optics to irregular problems, from biology to networks of personal computers, from embedded systems to programming environments; the following workshops are represented in this volume: { Workshop on Personal Computer Based Networks of Workstations { Workshop on Advances in Parallel and Distributed Computational Models { Workshop on Par. and Dist. Comp. in Image, Video, and Multimedia { Workshop on High-Level Parallel Prog. Models and Supportive Env. { Workshop on High Performance Data Mining { Workshop on Solving Irregularly Structured Problems in Parallel { Workshop on Java for Parallel and Distributed Computing { WorkshoponBiologicallyInspiredSolutionsto ParallelProcessingProblems { Workshop on Parallel and Distributed Real-Time Systems { Workshop on Embedded HPC Systems and Applications { Recon gurable Architectures Workshop { Workshop on Formal Methods for Parallel Programming { Workshop on Optics and Computer Science { Workshop on Run-Time Systems for Parallel Programming { Workshop on Fault-Tolerant Parallel and Distributed Systems All papers published in the workshops proceedings were selected by the p- gram committee on the basis of referee reports. Each paper was reviewed by independent referees who judged the papers for originality, quality, and cons- tency with the themes of the workshops.
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing
Author: Aijun An
Publisher: Springer Science & Business Media
ISBN: 3540725296
Category : Computers
Languages : en
Pages : 598
Book Description
This book constitutes the refereed proceedings of the 11th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2007, held in Toronto, Canada in May 2007 in conjunction with the Second International Conference on Rough Sets and Knowledge Technology, RSKT 2007, both as part of the Joint Rough Set Symposium, JRS 2007.
Publisher: Springer Science & Business Media
ISBN: 3540725296
Category : Computers
Languages : en
Pages : 598
Book Description
This book constitutes the refereed proceedings of the 11th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2007, held in Toronto, Canada in May 2007 in conjunction with the Second International Conference on Rough Sets and Knowledge Technology, RSKT 2007, both as part of the Joint Rough Set Symposium, JRS 2007.
Metaheuristics for Big Data
Author: Clarisse Dhaenens
Publisher: John Wiley & Sons
ISBN: 1119347580
Category : Computers
Languages : en
Pages : 217
Book Description
Big Data is a new field, with many technological challenges to be understood in order to use it to its full potential. These challenges arise at all stages of working with Big Data, beginning with data generation and acquisition. The storage and management phase presents two critical challenges: infrastructure, for storage and transportation, and conceptual models. Finally, to extract meaning from Big Data requires complex analysis. Here the authors propose using metaheuristics as a solution to these challenges; they are first able to deal with large size problems and secondly flexible and therefore easily adaptable to different types of data and different contexts. The use of metaheuristics to overcome some of these data mining challenges is introduced and justified in the first part of the book, alongside a specific protocol for the performance evaluation of algorithms. An introduction to metaheuristics follows. The second part of the book details a number of data mining tasks, including clustering, association rules, supervised classification and feature selection, before explaining how metaheuristics can be used to deal with them. This book is designed to be self-contained, so that readers can understand all of the concepts discussed within it, and to provide an overview of recent applications of metaheuristics to knowledge discovery problems in the context of Big Data.
Publisher: John Wiley & Sons
ISBN: 1119347580
Category : Computers
Languages : en
Pages : 217
Book Description
Big Data is a new field, with many technological challenges to be understood in order to use it to its full potential. These challenges arise at all stages of working with Big Data, beginning with data generation and acquisition. The storage and management phase presents two critical challenges: infrastructure, for storage and transportation, and conceptual models. Finally, to extract meaning from Big Data requires complex analysis. Here the authors propose using metaheuristics as a solution to these challenges; they are first able to deal with large size problems and secondly flexible and therefore easily adaptable to different types of data and different contexts. The use of metaheuristics to overcome some of these data mining challenges is introduced and justified in the first part of the book, alongside a specific protocol for the performance evaluation of algorithms. An introduction to metaheuristics follows. The second part of the book details a number of data mining tasks, including clustering, association rules, supervised classification and feature selection, before explaining how metaheuristics can be used to deal with them. This book is designed to be self-contained, so that readers can understand all of the concepts discussed within it, and to provide an overview of recent applications of metaheuristics to knowledge discovery problems in the context of Big Data.
Euro-Par’ 99 Parallel Processing
Author: Patrick Amestoy
Publisher: Springer
ISBN: 354048311X
Category : Computers
Languages : en
Pages : 1530
Book Description
Euro-Parisaninternationalconferencededicatedtothepromotionandadvan- ment of all aspects of parallel computing. The major themes can be divided into the broad categories of hardware, software, algorithms and applications for p- allel computing. The objective of Euro-Par is to provide a forum within which to promote the development of parallel computing both as an industrial te- nique and an academic discipline, extending the frontier of both the state of the art and the state of the practice. This is particularly important at a time when parallel computing is undergoing strong and sustained development and experiencing real industrial take-up. The main audience for and participants in Euro-Parareseenasresearchersinacademicdepartments,governmentlabora- ries and industrial organisations. Euro-Par’s objective is to become the primary choice of such professionals for the presentation of new results in their specic areas. Euro-Par is also interested in applications which demonstrate the e - tiveness of the main Euro-Par themes. There is now a permanent Web site for the series http://brahms. fmi. uni-passau. de/cl/europar where the history of the conference is described. Euro-Par is now sponsored by the Association of Computer Machinery and the International Federation of Information Processing. Euro-Par’99 The format of Euro-Par’99follows that of the past four conferences and consists of a number of topics eachindividually monitored by a committee of four. There were originally 23 topics for this year’s conference. The call for papers attracted 343 submissions of which 188 were accepted. Of the papers accepted, 4 were judged as distinguished, 111 as regular and 73 as short papers.
Publisher: Springer
ISBN: 354048311X
Category : Computers
Languages : en
Pages : 1530
Book Description
Euro-Parisaninternationalconferencededicatedtothepromotionandadvan- ment of all aspects of parallel computing. The major themes can be divided into the broad categories of hardware, software, algorithms and applications for p- allel computing. The objective of Euro-Par is to provide a forum within which to promote the development of parallel computing both as an industrial te- nique and an academic discipline, extending the frontier of both the state of the art and the state of the practice. This is particularly important at a time when parallel computing is undergoing strong and sustained development and experiencing real industrial take-up. The main audience for and participants in Euro-Parareseenasresearchersinacademicdepartments,governmentlabora- ries and industrial organisations. Euro-Par’s objective is to become the primary choice of such professionals for the presentation of new results in their specic areas. Euro-Par is also interested in applications which demonstrate the e - tiveness of the main Euro-Par themes. There is now a permanent Web site for the series http://brahms. fmi. uni-passau. de/cl/europar where the history of the conference is described. Euro-Par is now sponsored by the Association of Computer Machinery and the International Federation of Information Processing. Euro-Par’99 The format of Euro-Par’99follows that of the past four conferences and consists of a number of topics eachindividually monitored by a committee of four. There were originally 23 topics for this year’s conference. The call for papers attracted 343 submissions of which 188 were accepted. Of the papers accepted, 4 were judged as distinguished, 111 as regular and 73 as short papers.
Big Data Analytics for Satellite Image Processing and Remote Sensing
Author: Swarnalatha, P.
Publisher: IGI Global
ISBN: 1522536442
Category : Technology & Engineering
Languages : en
Pages : 272
Book Description
The scope of image processing and recognition has broadened due to the gap in scientific visualization. Thus, new imaging techniques have developed, and it is imperative to study this progression for optimal utilization. Big Data Analytics for Satellite Image Processing and Remote Sensing is a critical scholarly resource that examines the challenges and difficulties of implementing big data in image processing for remote sensing and related areas. Featuring coverage on a broad range of topics, such as distributed computing, parallel processing, and spatial data, this book is geared towards scientists, professionals, researchers, and academicians seeking current research on the use of big data analytics in satellite image processing and remote sensing.
Publisher: IGI Global
ISBN: 1522536442
Category : Technology & Engineering
Languages : en
Pages : 272
Book Description
The scope of image processing and recognition has broadened due to the gap in scientific visualization. Thus, new imaging techniques have developed, and it is imperative to study this progression for optimal utilization. Big Data Analytics for Satellite Image Processing and Remote Sensing is a critical scholarly resource that examines the challenges and difficulties of implementing big data in image processing for remote sensing and related areas. Featuring coverage on a broad range of topics, such as distributed computing, parallel processing, and spatial data, this book is geared towards scientists, professionals, researchers, and academicians seeking current research on the use of big data analytics in satellite image processing and remote sensing.
Learning from Data Streams
Author: João Gama
Publisher: Springer Science & Business Media
ISBN: 3540736794
Category : Computers
Languages : en
Pages : 244
Book Description
Processing data streams has raised new research challenges over the last few years. This book provides the reader with a comprehensive overview of stream data processing, including famous prototype implementations like the Nile system and the TinyOS operating system. Applications in security, the natural sciences, and education are presented. The huge bibliography offers an excellent starting point for further reading and future research.
Publisher: Springer Science & Business Media
ISBN: 3540736794
Category : Computers
Languages : en
Pages : 244
Book Description
Processing data streams has raised new research challenges over the last few years. This book provides the reader with a comprehensive overview of stream data processing, including famous prototype implementations like the Nile system and the TinyOS operating system. Applications in security, the natural sciences, and education are presented. The huge bibliography offers an excellent starting point for further reading and future research.
Medical Big Data and Internet of Medical Things
Author: Aboul Hassanien
Publisher: CRC Press
ISBN: 135103037X
Category : Computers
Languages : en
Pages : 357
Book Description
Big data and the Internet of Things (IoT) play a vital role in prediction systems used in biological and medical applications, particularly for resolving issues related to disease biology at different scales. Modelling and integrating medical big data with the IoT helps in building effective prediction systems for automatic recommendations of diagnosis and treatment. The ability to mine, process, analyse, characterize, classify and cluster a variety and wide volume of medical data is a challenging task. There is a great demand for the design and development of methods dealing with capturing and automatically analysing medical data from imaging systems and IoT sensors. Addressing analytical and legal issues, and research on integration of big data analytics with respect to clinical practice and clinical utility, architectures and clustering techniques for IoT data processing, effective frameworks for removal of misclassified instances, practicality of big data analytics, methodological and technical issues, potential of Hadoop in managing healthcare data is the need of the hour. This book integrates different aspects used in the field of healthcare such as big data, IoT, soft computing, machine learning, augmented reality, organs on chip, personalized drugs, implantable electronics, integration of bio-interfaces, and wearable sensors, devices, practical body area network (BAN) and architectures of web systems. Key Features: Addresses various applications of Medical Big Data and Internet of Medical Things in real time environment Highlights recent innovations, designs, developments and topics of interest in machine learning techniques for classification of medical data Provides background and solutions to existing challenges in Medical Big Data and Internet of Medical Things Provides optimization techniques and programming models to parallelize the computationally intensive tasks in data mining of medical data Discusses interactions, advantages, limitations, challenges and future perspectives of IoT based remote healthcare monitoring systems. Includes data privacy and security analysis of cryptography methods for the Web of Medical Things (WoMT) Presents case studies on the next generation medical chair, electronic nose and pill cam are also presented.
Publisher: CRC Press
ISBN: 135103037X
Category : Computers
Languages : en
Pages : 357
Book Description
Big data and the Internet of Things (IoT) play a vital role in prediction systems used in biological and medical applications, particularly for resolving issues related to disease biology at different scales. Modelling and integrating medical big data with the IoT helps in building effective prediction systems for automatic recommendations of diagnosis and treatment. The ability to mine, process, analyse, characterize, classify and cluster a variety and wide volume of medical data is a challenging task. There is a great demand for the design and development of methods dealing with capturing and automatically analysing medical data from imaging systems and IoT sensors. Addressing analytical and legal issues, and research on integration of big data analytics with respect to clinical practice and clinical utility, architectures and clustering techniques for IoT data processing, effective frameworks for removal of misclassified instances, practicality of big data analytics, methodological and technical issues, potential of Hadoop in managing healthcare data is the need of the hour. This book integrates different aspects used in the field of healthcare such as big data, IoT, soft computing, machine learning, augmented reality, organs on chip, personalized drugs, implantable electronics, integration of bio-interfaces, and wearable sensors, devices, practical body area network (BAN) and architectures of web systems. Key Features: Addresses various applications of Medical Big Data and Internet of Medical Things in real time environment Highlights recent innovations, designs, developments and topics of interest in machine learning techniques for classification of medical data Provides background and solutions to existing challenges in Medical Big Data and Internet of Medical Things Provides optimization techniques and programming models to parallelize the computationally intensive tasks in data mining of medical data Discusses interactions, advantages, limitations, challenges and future perspectives of IoT based remote healthcare monitoring systems. Includes data privacy and security analysis of cryptography methods for the Web of Medical Things (WoMT) Presents case studies on the next generation medical chair, electronic nose and pill cam are also presented.