Mining Social Media

Mining Social Media PDF Author: Lam Thuy Vo
Publisher: No Starch Press
ISBN: 1593279167
Category : Computers
Languages : en
Pages : 210

Get Book Here

Book Description
BuzzFeed News Senior Reporter Lam Thuy Vo explains how to mine, process, and analyze data from the social web in meaningful ways with the Python programming language. Did fake Twitter accounts help sway a presidential election? What can Facebook and Reddit archives tell us about human behavior? In Mining Social Media, senior BuzzFeed reporter Lam Thuy Vo shows you how to use Python and key data analysis tools to find the stories buried in social media. Whether you're a professional journalist, an academic researcher, or a citizen investigator, you'll learn how to use technical tools to collect and analyze data from social media sources to build compelling, data-driven stories. Learn how to: Write Python scripts and use APIs to gather data from the social web Download data archives and dig through them for insights Inspect HTML downloaded from websites for useful content Format, aggregate, sort, and filter your collected data using Google Sheets Create data visualizations to illustrate your discoveries Perform advanced data analysis using Python, Jupyter Notebooks, and the pandas library Apply what you've learned to research topics on your own Social media is filled with thousands of hidden stories just waiting to be told. Learn to use the data-sleuthing tools that professionals use to write your own data-driven stories.

Mining Social Media

Mining Social Media PDF Author: Lam Thuy Vo
Publisher: No Starch Press
ISBN: 1593279167
Category : Computers
Languages : en
Pages : 210

Get Book Here

Book Description
BuzzFeed News Senior Reporter Lam Thuy Vo explains how to mine, process, and analyze data from the social web in meaningful ways with the Python programming language. Did fake Twitter accounts help sway a presidential election? What can Facebook and Reddit archives tell us about human behavior? In Mining Social Media, senior BuzzFeed reporter Lam Thuy Vo shows you how to use Python and key data analysis tools to find the stories buried in social media. Whether you're a professional journalist, an academic researcher, or a citizen investigator, you'll learn how to use technical tools to collect and analyze data from social media sources to build compelling, data-driven stories. Learn how to: Write Python scripts and use APIs to gather data from the social web Download data archives and dig through them for insights Inspect HTML downloaded from websites for useful content Format, aggregate, sort, and filter your collected data using Google Sheets Create data visualizations to illustrate your discoveries Perform advanced data analysis using Python, Jupyter Notebooks, and the pandas library Apply what you've learned to research topics on your own Social media is filled with thousands of hidden stories just waiting to be told. Learn to use the data-sleuthing tools that professionals use to write your own data-driven stories.

Social Media Mining

Social Media Mining PDF Author: Reza Zafarani
Publisher: Cambridge University Press
ISBN: 1107018854
Category : Computers
Languages : en
Pages : 337

Get Book Here

Book Description
Integrates social media, social network analysis, and data mining to provide an understanding of the potentials of social media mining.

Social Media Data Mining and Analytics

Social Media Data Mining and Analytics PDF Author: Gabor Szabo
Publisher: John Wiley & Sons
ISBN: 1118824857
Category : Computers
Languages : en
Pages : 352

Get Book Here

Book Description
Harness the power of social media to predict customer behavior and improve sales Social media is the biggest source of Big Data. Because of this, 90% of Fortune 500 companies are investing in Big Data initiatives that will help them predict consumer behavior to produce better sales results. Social Media Data Mining and Analytics shows analysts how to use sophisticated techniques to mine social media data, obtaining the information they need to generate amazing results for their businesses. Social Media Data Mining and Analytics isn't just another book on the business case for social media. Rather, this book provides hands-on examples for applying state-of-the-art tools and technologies to mine social media - examples include Twitter, Wikipedia, Stack Exchange, LiveJournal, movie reviews, and other rich data sources. In it, you will learn: The four key characteristics of online services-users, social networks, actions, and content The full data discovery lifecycle-data extraction, storage, analysis, and visualization How to work with code and extract data to create solutions How to use Big Data to make accurate customer predictions How to personalize the social media experience using machine learning Using the techniques the authors detail will provide organizations the competitive advantage they need to harness the rich data available from social media platforms.

Mining the Social Web

Mining the Social Web PDF Author: Matthew Russell
Publisher: "O'Reilly Media, Inc."
ISBN: 1449388345
Category : Computers
Languages : en
Pages : 356

Get Book Here

Book Description
Facebook, Twitter, and LinkedIn generate a tremendous amount of valuable social data, but how can you find out who's making connections with social media, what they’re talking about, or where they’re located? This concise and practical book shows you how to answer these questions and more. You'll learn how to combine social web data, analysis techniques, and visualization to help you find what you've been looking for in the social haystack, as well as useful information you didn't know existed. Each standalone chapter introduces techniques for mining data in different areas of the social Web, including blogs and email. All you need to get started is a programming background and a willingness to learn basic Python tools. Get a straightforward synopsis of the social web landscape Use adaptable scripts on GitHub to harvest data from social network APIs such as Twitter, Facebook, and LinkedIn Learn how to employ easy-to-use Python tools to slice and dice the data you collect Explore social connections in microformats with the XHTML Friends Network Apply advanced mining techniques such as TF-IDF, cosine similarity, collocation analysis, document summarization, and clique detection Build interactive visualizations with web technologies based upon HTML5 and JavaScript toolkits "Let Matthew Russell serve as your guide to working with social data sets old (email, blogs) and new (Twitter, LinkedIn, Facebook). Mining the Social Web is a natural successor to Programming Collective Intelligence: a practical, hands-on approach to hacking on data from the social Web with Python." --Jeff Hammerbacher, Chief Scientist, Cloudera "A rich, compact, useful, practical introduction to a galaxy of tools, techniques, and theories for exploring structured and unstructured data." --Alex Martelli, Senior Staff Engineer, Google

Mastering Social Media Mining with Python

Mastering Social Media Mining with Python PDF Author: Marco Bonzanini
Publisher: Packt Publishing Ltd
ISBN: 1783552026
Category : Computers
Languages : en
Pages : 333

Get Book Here

Book Description
Acquire and analyze data from all corners of the social web with Python About This Book Make sense of highly unstructured social media data with the help of the insightful use cases provided in this guide Use this easy-to-follow, step-by-step guide to apply analytics to complicated and messy social data This is your one-stop solution to fetching, storing, analyzing, and visualizing social media data Who This Book Is For This book is for intermediate Python developers who want to engage with the use of public APIs to collect data from social media platforms and perform statistical analysis in order to produce useful insights from data. The book assumes a basic understanding of the Python Standard Library and provides practical examples to guide you toward the creation of your data analysis project based on social data. What You Will Learn Interact with a social media platform via their public API with Python Store social data in a convenient format for data analysis Slice and dice social data using Python tools for data science Apply text analytics techniques to understand what people are talking about on social media Apply advanced statistical and analytical techniques to produce useful insights from data Build beautiful visualizations with web technologies to explore data and present data products In Detail Your social media is filled with a wealth of hidden data – unlock it with the power of Python. Transform your understanding of your clients and customers when you use Python to solve the problems of understanding consumer behavior and turning raw data into actionable customer insights. This book will help you acquire and analyze data from leading social media sites. It will show you how to employ scientific Python tools to mine popular social websites such as Facebook, Twitter, Quora, and more. Explore the Python libraries used for social media mining, and get the tips, tricks, and insider insight you need to make the most of them. Discover how to develop data mining tools that use a social media API, and how to create your own data analysis projects using Python for clear insight from your social data. Style and approach This practical, hands-on guide will help you learn everything you need to perform data mining for social media. Throughout the book, we take an example-oriented approach to use Python for data analysis and provide useful tips and tricks that you can use in day-to-day tasks.

Mining the Social Web

Mining the Social Web PDF Author: Matthew A. Russell
Publisher: O'Reilly Media
ISBN: 1491973528
Category : Computers
Languages : en
Pages : 425

Get Book Here

Book Description
Mine the rich data tucked away in popular social websites such as Twitter, Facebook, LinkedIn, and Instagram. With the third edition of this popular guide, data scientists, analysts, and programmers will learn how to glean insights from social media—including who’s connecting with whom, what they’re talking about, and where they’re located—using Python code examples, Jupyter notebooks, or Docker containers. In part one, each standalone chapter focuses on one aspect of the social landscape, including each of the major social sites, as well as web pages, blogs and feeds, mailboxes, GitHub, and a newly added chapter covering Instagram. Part two provides a cookbook with two dozen bite-size recipes for solving particular issues with Twitter. Get a straightforward synopsis of the social web landscape Use Docker to easily run each chapter’s example code, packaged as a Jupyter notebook Adapt and contribute to the code’s open source GitHub repository Learn how to employ best-in-class Python 3 tools to slice and dice the data you collect Apply advanced mining techniques such as TFIDF, cosine similarity, collocation analysis, clique detection, and image recognition Build beautiful data visualizations with Python and JavaScript toolkits

Social Media Mining and Social Network Analysis: Emerging Research

Social Media Mining and Social Network Analysis: Emerging Research PDF Author: Xu, Guandong
Publisher: IGI Global
ISBN: 1466628073
Category : Computers
Languages : en
Pages : 272

Get Book Here

Book Description
Social Media Mining and Social Network Analysis: Emerging Research highlights the advancements made in social network analysis and social web mining and its influence in the fields of computer science, information systems, sociology, organization science discipline and much more. This collection of perspectives on developmental practice is useful for industrial practitioners as well as researchers and scholars.

Mastering Social Media Mining with R

Mastering Social Media Mining with R PDF Author: Sharan Kumar Ravindran
Publisher: Packt Publishing Ltd
ISBN: 1784399671
Category : Computers
Languages : en
Pages : 248

Get Book Here

Book Description
Extract valuable data from your social media sites and make better business decisions using R About This Book Explore the social media APIs in R to capture data and tame it Employ the machine learning capabilities of R to gain optimal business value A hands-on guide with real-world examples to help you take advantage of the vast opportunities that come with social media data Who This Book Is For If you have basic knowledge of R in terms of its libraries and are aware of different machine learning techniques, this book is for you. Those with experience in data analysis who are interested in mining social media data will find this book useful. What You Will Learn Access APIs of popular social media sites and extract data Perform sentiment analysis and identify trending topics Measure CTR performance for social media campaigns Implement exploratory data analysis and correlation analysis Build a logistic regression model to detect spam messages Construct clusters of pictures using the K-means algorithm and identify popular personalities and destinations Develop recommendation systems using Collaborative Filtering and the Apriori algorithm In Detail With an increase in the number of users on the web, the content generated has increased substantially, bringing in the need to gain insights into the untapped gold mine that is social media data. For computational statistics, R has an advantage over other languages in providing readily-available data extraction and transformation packages, making it easier to carry out your ETL tasks. Along with this, its data visualization packages help users get a better understanding of the underlying data distributions while its range of "standard" statistical packages simplify analysis of the data. This book will teach you how powerful business cases are solved by applying machine learning techniques on social media data. You will learn about important and recent developments in the field of social media, along with a few advanced topics such as Open Authorization (OAuth). Through practical examples, you will access data from R using APIs of various social media sites such as Twitter, Facebook, Instagram, GitHub, Foursquare, LinkedIn, Blogger, and other networks. We will provide you with detailed explanations on the implementation of various use cases using R programming. With this handy guide, you will be ready to embark on your journey as an independent social media analyst. Style and approach This easy-to-follow guide is packed with hands-on, step-by-step examples that will enable you to convert your real-world social media data into useful, practical information.

Post, Mine, Repeat

Post, Mine, Repeat PDF Author: Helen Kennedy
Publisher: Springer
ISBN: 1137353988
Category : Social Science
Languages : en
Pages : 270

Get Book Here

Book Description
In this book, Helen Kennedy argues that as social media data mining becomes more and more ordinary, as we post, mine and repeat, new data relations emerge. These new data relations are characterised by a widespread desire for numbers and the troubling consequences of this desire, and also by the possibility of doing good with data and resisting data power, by new and old concerns, and by instability and contradiction. Drawing on action research with public sector organisations, interviews with commercial social insights companies and their clients, focus groups with social media users and other research, Kennedy provides a fascinating and detailed account of living with social media data mining inside the organisations that make up the fabric of everyday life.

Data Mining for Social Network Data

Data Mining for Social Network Data PDF Author: Nasrullah Memon
Publisher: Springer Science & Business Media
ISBN: 1441962875
Category : Business & Economics
Languages : en
Pages : 217

Get Book Here

Book Description
Driven by counter-terrorism efforts, marketing analysis and an explosion in online social networking in recent years, data mining has moved to the forefront of information science. This proposed Special Issue on Data Mining for Social Network Data will present a broad range of recent studies in social networking analysis. It will focus on emerging trends and needs in discovery and analysis of communities, solitary and social activities, activities in open for a and commercial sites as well. It will also look at network modeling, infrastructure construction, dynamic growth and evolution pattern discovery using machine learning approaches and multi-agent based simulations. Editors are three rising stars in world of data mining, knowledge discovery, social network analysis, and information infrastructures, and are anchored by Springer author/editor Hsinchun Chen (Terrorism Informatics; Medical Informatics; Digital Government), who is one of the most prominent intelligence analysis and data mining experts in the world.