Micromechanics of Materials, with Applications

Micromechanics of Materials, with Applications PDF Author: Mark Kachanov
Publisher: Springer
ISBN: 3319762044
Category : Science
Languages : en
Pages : 712

Get Book

Book Description
This book on micromechanics explores both traditional aspects and the advances made in the last 10–15 years. The viewpoint it assumes is that the rapidly developing field of micromechanics, apart from being of fundamental scientific importance, is motivated by materials science applications. The introductory chapter provides the necessary background together with some less traditional material, examining e.g. approximate elastic symmetries, Rice’s technique of internal variables and multipole expansions. The remainder of the book is divided into the following parts: (A) classic results, which consist of Rift Valley Energy (RVE), Hill’s results, Eshelby’s results for ellipsoidal inhomogeneities, and approximate schemes for the effective properties; (B) results aimed at overcoming these limitations, such as volumes smaller than RVE, quantitative characterization of “irregular” microstructures, non-ellipsoidal inhomogeneities, and cross-property connections; (C) local fields and effects of interactions on them; and lastly (D) – the largest section – which explores applications to eight classes of materials that illustrate how to apply the micromechanics methodology to specific materials.

Micromechanics of Materials, with Applications

Micromechanics of Materials, with Applications PDF Author: Mark Kachanov
Publisher: Springer
ISBN: 3319762044
Category : Science
Languages : en
Pages : 712

Get Book

Book Description
This book on micromechanics explores both traditional aspects and the advances made in the last 10–15 years. The viewpoint it assumes is that the rapidly developing field of micromechanics, apart from being of fundamental scientific importance, is motivated by materials science applications. The introductory chapter provides the necessary background together with some less traditional material, examining e.g. approximate elastic symmetries, Rice’s technique of internal variables and multipole expansions. The remainder of the book is divided into the following parts: (A) classic results, which consist of Rift Valley Energy (RVE), Hill’s results, Eshelby’s results for ellipsoidal inhomogeneities, and approximate schemes for the effective properties; (B) results aimed at overcoming these limitations, such as volumes smaller than RVE, quantitative characterization of “irregular” microstructures, non-ellipsoidal inhomogeneities, and cross-property connections; (C) local fields and effects of interactions on them; and lastly (D) – the largest section – which explores applications to eight classes of materials that illustrate how to apply the micromechanics methodology to specific materials.

Fundamentals of Micromechanics of Solids

Fundamentals of Micromechanics of Solids PDF Author: Jianmin Qu
Publisher: Wiley
ISBN: 9780471464518
Category : Science
Languages : en
Pages : 0

Get Book

Book Description
The complete primer to micromechanics Fundamentals of Micromechanics of Solids is the first book integrating various approaches in micromechanics into a unified mathematical framework, complete with coverage of both linear and nonlinear behaviors. Based on this unified framework, results from the authors' own research, as well as existing results in the literature are re-derived in a logical, pedagogical, and understandable approach. It enables readers to follow the various developments of micromechanics theories and quickly understand its wide range of applications of micromechanics. This helpful guide is a powerful tool for learning the most fundamental ideas and approaches, basic concepts, principles, and methodologies of micromechanics. Readers will find: * Vigorous derivations of the mathematical framework * Introductions to both linear and nonlinear material behavior * Unique coverage of brittle damage, shape memory alloys, and TRIP steels * Large numbers of problems and exercises to support teaching and learning the concepts * Lists of references and suggested readings in each chapter

Micromechanics of Heterogeneous Materials

Micromechanics of Heterogeneous Materials PDF Author: Valeriy Buryachenko
Publisher: Springer Science & Business Media
ISBN: 0387684859
Category : Science
Languages : en
Pages : 704

Get Book

Book Description
Here is an accurate and timely account of micromechanics, which spans materials science, mechanical engineering, applied mathematics, technical physics, geophysics, and biology. The book features rigorous and unified theoretical methods of applied mathematics and statistical physics in the material science of microheterogeneous media. Uniquely, it offers a useful demonstration of the systematic and fundamental research of the microstructure of the wide class of heterogeneous materials of natural and synthetic nature.

Micromechanics of Defects in Solids

Micromechanics of Defects in Solids PDF Author: T. Mura
Publisher: Springer Science & Business Media
ISBN: 9789024732562
Category : Science
Languages : en
Pages : 616

Get Book

Book Description
This book stems from a course on Micromechanics that I started about fifteen years ago at Northwestern University. At that time, micromechanics was a rather unfamiliar subject. Although I repeated the course every year, I was never convinced that my notes have quite developed into a final manuscript because new topics emerged constantly requiring revisions, and additions. I finally came to realize that if this is continued, then I will never complete the book to my total satisfaction. Meanwhile, T. Mori and I had coauthored a book in Japanese, entitled Micromechanics, published by Baifu-kan, Tokyo, in 1975. It received an extremely favorable response from students and re searchers in Japan. This encouraged me to go ahead and publish my course notes in their latest version, as this book, which contains further development of the subject and is more comprehensive than the one published in Japanese. Micromechanics encompasses mechanics related to microstructures of materials. The method employed is a continuum theory of elasticity yet its applications cover a broad area relating to the mechanical behavior of materi als: plasticity, fracture and fatigue, constitutive equations, composite materi als, polycrystals, etc. These subjects are treated in this book by means of a powerful and unified method which is called the 'eigenstrain method. ' In particular, problems relating to inclusions and dislocations are most effectively analyzed by this method, and therefore, special emphasis is placed on these topics.

Micromechanics of Defects in Solids

Micromechanics of Defects in Solids PDF Author: T. Mura
Publisher: Springer Science & Business Media
ISBN: 9400934890
Category : Science
Languages : en
Pages : 601

Get Book

Book Description
This book stems from a course on Micromechanics that I started about fifteen years ago at Northwestern University. At that time, micromechanics was a rather unfamiliar subject. Although I repeated the course every year, I was never convinced that my notes have quite developed into a final manuscript because new topics emerged constantly requiring revisions, and additions. I finally came to realize that if this is continued, then I will never complete the book to my total satisfaction. Meanwhile, T. Mori and I had coauthored a book in Japanese, entitled Micromechanics, published by Baifu-kan, Tokyo, in 1975. It received an extremely favorable response from students and re searchers in Japan. This encouraged me to go ahead and publish my course notes in their latest version, as this book, which contains further development of the subject and is more comprehensive than the one published in Japanese. Micromechanics encompasses mechanics related to microstructures of materials. The method employed is a continuum theory of elasticity yet its applications cover a broad area relating to the mechanical behavior of materi als: plasticity, fracture and fatigue, constitutive equations, composite materi als, polycrystals, etc. These subjects are treated in this book by means of a powerful and unified method which is called the 'eigenstrain method. ' In particular, problems relating to inclusions and dislocations are most effectively analyzed by this method, and therefore, special emphasis is placed on these topics.

An Introduction to Computational Micromechanics

An Introduction to Computational Micromechanics PDF Author: Tarek I. Zohdi
Publisher: Springer Science & Business Media
ISBN: 3540323600
Category : Science
Languages : en
Pages : 195

Get Book

Book Description
In this, its second corrected printing, Zohdi and Wriggers’ illuminating text presents a comprehensive introduction to the subject. The authors include in their scope basic homogenization theory, microstructural optimization and multifield analysis of heterogeneous materials. This volume is ideal for researchers and engineers, and can be used in a first-year course for graduate students with an interest in the computational micromechanical analysis of new materials.

Handbook of Micromechanics and Nanomechanics

Handbook of Micromechanics and Nanomechanics PDF Author: Shaofan Li
Publisher: CRC Press
ISBN: 9814411248
Category : Science
Languages : en
Pages : 1264

Get Book

Book Description
This book presents the latest developments and applications of micromechanics and nanomechanics. It particularly focuses on some recent applications and impact areas of micromechanics and nanomechanics that have not been discussed in traditional micromechanics and nanomechanics books on metamaterials, micromechanics of ferroelectric/piezoelectric, electromagnetic materials, micromechanics of interface, size effects and strain gradient theories, computational and experimental nanomechanics, multiscale simulations and theories, soft matter composites, and computational homogenization theory. This book covers analytical, experimental, as well as computational and numerical approaches in depth.

Practical Micromechanics of Composite Materials

Practical Micromechanics of Composite Materials PDF Author: Jacob Aboudi
Publisher: Butterworth-Heinemann
ISBN: 0128206381
Category : Technology & Engineering
Languages : en
Pages : 416

Get Book

Book Description
Practical Micromechanics of Composite Materials provides an accessible treatment of micromechanical theories for the analysis and design of multi-phased composites. Written with both students and practitioners in mind and coupled with a fully functional MATLAB code to enable the solution of technologically relevant micromechanics problems, the book features an array of illustrative example problems and exercises highlighting key concepts and integrating the MATLAB code. The MATLAB scripts and functions empower readers to enhance and create new functionality tailored to their needs, and the book and code highly complement one another. The book presents classical lamination theory and then proceeds to describe how to obtain effective anisotropic properties of a unidirectional composite (ply) via micromechanics and multiscale analysis. Calculation of local fields via mechanical and thermal strain concentration tensors is presented in a unified way across several micromechanics theories. The importance of these local fields is demonstrated through the determination of consistent Margins of Safety (MoS) and failure envelopes for thermal and mechanical loading. Finally, micromechanics-based multiscale progressive damage is discussed and implemented in the accompanying MATLAB code. Emphasizes appropriate application of micromechanics theories to composite behavior Addresses multiple popular micromechanics theories, which are provided in MATLAB Discusses stresses and strains resulting from realistic thermal and mechanical loading Includes availability of solution manual for professors using the book in the classroom

Micromechanics and Nanosimulation of Metals and Composites

Micromechanics and Nanosimulation of Metals and Composites PDF Author: Siegfried Schmauder
Publisher: Springer Science & Business Media
ISBN: 3540786783
Category : Technology & Engineering
Languages : en
Pages : 432

Get Book

Book Description
The strength of metallic materials determines the usability and reliability of all the machines, tools and equipment around us. Yet, the question about which mechanisms control the strength and damage resistance of materials and how they can be optimised remains largely unanswered. How do real, heterogeneous ma- rials deform and fail? Why can a small modification of the microstructure increase the strength and damage resistance of materials manifold? How can the strength of heterogeneous materials be predicted? The purpose of this book is to present different experimental and computational analysis methods of micromechanics of damage and strength of materials and to demonstrate their applications to various micromechanical problems. This book summarizes at a glance some of the publications of the Computational Mechanics Group at the IMWF/MPA Stuttgart, dealing with atomistic, micro- and meso- chanical modelling and experimental analysis of strength and damage of metallic materials. In chapter 1, the micromechanisms of damage and fracture in different groups of materials are investigated experimentally, using direct observations and inverse analysis. The interaction of microstructural elements with the evolving damage is studied in these experiments. Chapter 2 presents different approaches to the - cromechanical simulation of composite materials: embedded unit cells, multiphase finite elements and multiparticle unit cells. Examples of the application of these models to the analysis of deformation and damage in different materials are given. Chapter 3 deals with the methods of numerical modelling of damage evolution and crack growth in heterogeneous materials.

Micromechanics of Composite Materials

Micromechanics of Composite Materials PDF Author: Jacob Aboudi
Publisher: Butterworth-Heinemann
ISBN: 0123970350
Category : Technology & Engineering
Languages : en
Pages : 1032

Get Book

Book Description
Summary: A Generalized Multiscale Analysis Approach brings together comprehensive background information on the multiscale nature of the composite, constituent material behaviour, damage models and key techniques for multiscale modelling, as well as presenting the findings and methods, developed over a lifetime's research, of three leading experts in the field. The unified approach presented in the book for conducting multiscale analysis and design of conventional and smart composite materials is also applicable for structures with complete linear and nonlinear material behavior, with numerous applications provided to illustrate use. Modeling composite behaviour is a key challenge in research and industry; when done efficiently and reliably it can save money, decrease time to market with new innovations and prevent component failure.