Author: Andreas Teske
Publisher: Frontiers Media SA
ISBN: 2889195368
Category : Microbiology
Languages : en
Pages : 305
Book Description
Deep subsurface microbiology is a highly active and rapidly advancing research field at the interface of microbiology and the geosciences; it focuses on the detection, identification, quantification, cultivation and activity measurements of bacteria, archaea and eukaryotes that permeate the subsurface biosphere of deep marine sediments and the basaltic ocean and continental crust. The deep subsurface biosphere abounds with uncultured, only recently discovered and – at best - incompletely understood microbial populations. In spatial extent and volume, Earth's subsurface biosphere is only rivaled by the deep sea water column. So far, no deep subsurface sediment has been found that is entirely devoid of microbial life; microbial cells and DNA remain detectable at sediment depths of more than 1 km; microbial life permeates deeply buried hydrocarbon reservoirs, and is also found several kilometers down in continental crust aquifers. Severe energy limitation, either as electron acceptor or donor shortage, and scarcity of microbially degradable organic carbon sources are among the evolutionary pressures that have shaped the genomic and physiological repertoire of the deep subsurface biosphere. Its biogeochemical role as long-term organic carbon repository, inorganic electron and energy source, and subduction recycling engine continues to be explored by current research at the interface of microbiology, geochemistry and biosphere/geosphere evolution. This Research Topic addresses some of the central research questions about deep subsurface microbiology and biogeochemistry: phylogenetic and physiological microbial diversity in the deep subsurface; microbial activity and survival strategies in severely energy-limited subsurface habitats; microbial activity as reflected in process rates and gene expression patterns; biogeographic isolation and connectivity in deep subsurface microbial communities; the ecological standing of subsurface biospheres in comparison to the surface biosphere – an independently flourishing biosphere, or mere survivors that tolerate burial (along with organic carbon compounds), or a combination of both? Advancing these questions on Earth’s deep subsurface biosphere redefines the habitat range, environmental tolerance, activity and diversity of microbial life.
Deep Subsurface Microbiology
Author: Andreas Teske
Publisher: Frontiers Media SA
ISBN: 2889195368
Category : Microbiology
Languages : en
Pages : 305
Book Description
Deep subsurface microbiology is a highly active and rapidly advancing research field at the interface of microbiology and the geosciences; it focuses on the detection, identification, quantification, cultivation and activity measurements of bacteria, archaea and eukaryotes that permeate the subsurface biosphere of deep marine sediments and the basaltic ocean and continental crust. The deep subsurface biosphere abounds with uncultured, only recently discovered and – at best - incompletely understood microbial populations. In spatial extent and volume, Earth's subsurface biosphere is only rivaled by the deep sea water column. So far, no deep subsurface sediment has been found that is entirely devoid of microbial life; microbial cells and DNA remain detectable at sediment depths of more than 1 km; microbial life permeates deeply buried hydrocarbon reservoirs, and is also found several kilometers down in continental crust aquifers. Severe energy limitation, either as electron acceptor or donor shortage, and scarcity of microbially degradable organic carbon sources are among the evolutionary pressures that have shaped the genomic and physiological repertoire of the deep subsurface biosphere. Its biogeochemical role as long-term organic carbon repository, inorganic electron and energy source, and subduction recycling engine continues to be explored by current research at the interface of microbiology, geochemistry and biosphere/geosphere evolution. This Research Topic addresses some of the central research questions about deep subsurface microbiology and biogeochemistry: phylogenetic and physiological microbial diversity in the deep subsurface; microbial activity and survival strategies in severely energy-limited subsurface habitats; microbial activity as reflected in process rates and gene expression patterns; biogeographic isolation and connectivity in deep subsurface microbial communities; the ecological standing of subsurface biospheres in comparison to the surface biosphere – an independently flourishing biosphere, or mere survivors that tolerate burial (along with organic carbon compounds), or a combination of both? Advancing these questions on Earth’s deep subsurface biosphere redefines the habitat range, environmental tolerance, activity and diversity of microbial life.
Publisher: Frontiers Media SA
ISBN: 2889195368
Category : Microbiology
Languages : en
Pages : 305
Book Description
Deep subsurface microbiology is a highly active and rapidly advancing research field at the interface of microbiology and the geosciences; it focuses on the detection, identification, quantification, cultivation and activity measurements of bacteria, archaea and eukaryotes that permeate the subsurface biosphere of deep marine sediments and the basaltic ocean and continental crust. The deep subsurface biosphere abounds with uncultured, only recently discovered and – at best - incompletely understood microbial populations. In spatial extent and volume, Earth's subsurface biosphere is only rivaled by the deep sea water column. So far, no deep subsurface sediment has been found that is entirely devoid of microbial life; microbial cells and DNA remain detectable at sediment depths of more than 1 km; microbial life permeates deeply buried hydrocarbon reservoirs, and is also found several kilometers down in continental crust aquifers. Severe energy limitation, either as electron acceptor or donor shortage, and scarcity of microbially degradable organic carbon sources are among the evolutionary pressures that have shaped the genomic and physiological repertoire of the deep subsurface biosphere. Its biogeochemical role as long-term organic carbon repository, inorganic electron and energy source, and subduction recycling engine continues to be explored by current research at the interface of microbiology, geochemistry and biosphere/geosphere evolution. This Research Topic addresses some of the central research questions about deep subsurface microbiology and biogeochemistry: phylogenetic and physiological microbial diversity in the deep subsurface; microbial activity and survival strategies in severely energy-limited subsurface habitats; microbial activity as reflected in process rates and gene expression patterns; biogeographic isolation and connectivity in deep subsurface microbial communities; the ecological standing of subsurface biospheres in comparison to the surface biosphere – an independently flourishing biosphere, or mere survivors that tolerate burial (along with organic carbon compounds), or a combination of both? Advancing these questions on Earth’s deep subsurface biosphere redefines the habitat range, environmental tolerance, activity and diversity of microbial life.
Geomicrobes: Life in Terrestrial Deep Subsurface
Author: Malin Bomberg
Publisher: Frontiers Media SA
ISBN: 2889451798
Category :
Languages : en
Pages : 143
Book Description
The deep subsurface is, in addition to space, one of the last unknown frontiers to human kind. A significant part of life on Earth resides in the deep subsurface, hiding great potential of microbial life of which we know only little. The conditions in the deep terrestrial subsurface are thought to resemble those of early Earth, which makes this environment an analog for studying early life in addition to possible extraterrestrial life in ultra-extreme conditions. Early microorganisms played a great role in shaping the conditions on the young Earth. Even today deep subsurface microorganisms interact with their geological environment transforming the conditions in the groundwater and on rock surfaces. Essential elements for life are richly present but in difficultly accessible form. The elements driving the microbial deep life is still not completely identified. Most of the microorganisms detected by novel molecular techniques still lack cultured representatives. Nevertheless, using modern sequencing techniques and bioinformatics the functional roles of these microorganisms are being revealed. We are starting to see the differences and similarities between the life in the deep subsurface and surface domains. We may even begin to see the function of evolution by comparing deep life to life closer to the surface of Earth. Deep life consists of organisms from all known domains of life. This Research Topic reveals some of the rich diversity and functional properties of the great biomass residing in the deep dark subsurface.
Publisher: Frontiers Media SA
ISBN: 2889451798
Category :
Languages : en
Pages : 143
Book Description
The deep subsurface is, in addition to space, one of the last unknown frontiers to human kind. A significant part of life on Earth resides in the deep subsurface, hiding great potential of microbial life of which we know only little. The conditions in the deep terrestrial subsurface are thought to resemble those of early Earth, which makes this environment an analog for studying early life in addition to possible extraterrestrial life in ultra-extreme conditions. Early microorganisms played a great role in shaping the conditions on the young Earth. Even today deep subsurface microorganisms interact with their geological environment transforming the conditions in the groundwater and on rock surfaces. Essential elements for life are richly present but in difficultly accessible form. The elements driving the microbial deep life is still not completely identified. Most of the microorganisms detected by novel molecular techniques still lack cultured representatives. Nevertheless, using modern sequencing techniques and bioinformatics the functional roles of these microorganisms are being revealed. We are starting to see the differences and similarities between the life in the deep subsurface and surface domains. We may even begin to see the function of evolution by comparing deep life to life closer to the surface of Earth. Deep life consists of organisms from all known domains of life. This Research Topic reveals some of the rich diversity and functional properties of the great biomass residing in the deep dark subsurface.
Microbiology of the Terrestrial Deep Subsurface
Author: Penny S. Amy
Publisher: CRC Press
ISBN: 1351083015
Category : Science
Languages : en
Pages : 369
Book Description
Obtaining and analyzing samples is challenging in subsurface science. This first-of-its-kind reference book addresses accomplishments in this field-from drilling to sample work-up. A collaborative approach is taken, involving the efforts of microbiologists, geochemists, hydrologists, and drilling and mining experts to present a comprehensive view of subsurface research. The text provides practical information about obtaining, analyzing, and evaluating subsurface materials; the current status of subsurface microbial ecology; and describes several applications that will interest a variety of readers, including engineers, physical, and life scientists.
Publisher: CRC Press
ISBN: 1351083015
Category : Science
Languages : en
Pages : 369
Book Description
Obtaining and analyzing samples is challenging in subsurface science. This first-of-its-kind reference book addresses accomplishments in this field-from drilling to sample work-up. A collaborative approach is taken, involving the efforts of microbiologists, geochemists, hydrologists, and drilling and mining experts to present a comprehensive view of subsurface research. The text provides practical information about obtaining, analyzing, and evaluating subsurface materials; the current status of subsurface microbial ecology; and describes several applications that will interest a variety of readers, including engineers, physical, and life scientists.
The Chemistry of Microbiomes
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309458390
Category : Science
Languages : en
Pages : 133
Book Description
The 21st century has witnessed a complete revolution in the understanding and description of bacteria in eco- systems and microbial assemblages, and how they are regulated by complex interactions among microbes, hosts, and environments. The human organism is no longer considered a monolithic assembly of tissues, but is instead a true ecosystem composed of human cells, bacteria, fungi, algae, and viruses. As such, humans are not unlike other complex ecosystems containing microbial assemblages observed in the marine and earth environments. They all share a basic functional principle: Chemical communication is the universal language that allows such groups to properly function together. These chemical networks regulate interactions like metabolic exchange, antibiosis and symbiosis, and communication. The National Academies of Sciences, Engineering, and Medicine's Chemical Sciences Roundtable organized a series of four seminars in the autumn of 2016 to explore the current advances, opportunities, and challenges toward unveiling this "chemical dark matter" and its role in the regulation and function of different ecosystems. The first three focused on specific ecosystemsâ€"earth, marine, and humanâ€"and the last on all microbiome systems. This publication summarizes the presentations and discussions from the seminars.
Publisher: National Academies Press
ISBN: 0309458390
Category : Science
Languages : en
Pages : 133
Book Description
The 21st century has witnessed a complete revolution in the understanding and description of bacteria in eco- systems and microbial assemblages, and how they are regulated by complex interactions among microbes, hosts, and environments. The human organism is no longer considered a monolithic assembly of tissues, but is instead a true ecosystem composed of human cells, bacteria, fungi, algae, and viruses. As such, humans are not unlike other complex ecosystems containing microbial assemblages observed in the marine and earth environments. They all share a basic functional principle: Chemical communication is the universal language that allows such groups to properly function together. These chemical networks regulate interactions like metabolic exchange, antibiosis and symbiosis, and communication. The National Academies of Sciences, Engineering, and Medicine's Chemical Sciences Roundtable organized a series of four seminars in the autumn of 2016 to explore the current advances, opportunities, and challenges toward unveiling this "chemical dark matter" and its role in the regulation and function of different ecosystems. The first three focused on specific ecosystemsâ€"earth, marine, and humanâ€"and the last on all microbiome systems. This publication summarizes the presentations and discussions from the seminars.
The Deep Hot Biosphere
Author: Thomas Gold
Publisher: Springer Science & Business Media
ISBN: 1461214009
Category : Science
Languages : en
Pages : 248
Book Description
This book sets forth a set of truly controversial and astonishing theories: First, it proposes that below the surface of the earth is a biosphere of greater mass and volume than the biosphere the total sum of living things on our planet's continents and in its oceans. Second, it proposes that the inhabitants of this subterranean biosphere are not plants or animals as we know them, but heat-loving bacteria that survive on a diet consisting solely of hydrocarbons that is, natural gas and petroleum. And third and perhaps most heretically, the book advances the stunning idea that most hydrocarbons on Earth are not the byproduct of biological debris ("fossil fuels"), but were a common constituent of the materials from which the earth itself was formed some 4.5 billion years ago. The implications are astounding. The theory proposes answers to often-asked questions: Is the deep hot biosphere where life originated, and do Mars and other seemingly barren planets contain deep biospheres? Even more provocatively, is it possible that there is an enormous store of hydrocarbons upwelling from deep within the earth that can provide us with abundant supplies of gas and petroleum? However far-fetched these ideas seem, they are supported by a growing body of evidence, and by the indisputable stature and seriousness Gold brings to any scientific debate. In this book we see a brilliant and boldly original thinker, increasingly a rarity in modern science, as he develops potentially revolutionary ideas about how our world works.
Publisher: Springer Science & Business Media
ISBN: 1461214009
Category : Science
Languages : en
Pages : 248
Book Description
This book sets forth a set of truly controversial and astonishing theories: First, it proposes that below the surface of the earth is a biosphere of greater mass and volume than the biosphere the total sum of living things on our planet's continents and in its oceans. Second, it proposes that the inhabitants of this subterranean biosphere are not plants or animals as we know them, but heat-loving bacteria that survive on a diet consisting solely of hydrocarbons that is, natural gas and petroleum. And third and perhaps most heretically, the book advances the stunning idea that most hydrocarbons on Earth are not the byproduct of biological debris ("fossil fuels"), but were a common constituent of the materials from which the earth itself was formed some 4.5 billion years ago. The implications are astounding. The theory proposes answers to often-asked questions: Is the deep hot biosphere where life originated, and do Mars and other seemingly barren planets contain deep biospheres? Even more provocatively, is it possible that there is an enormous store of hydrocarbons upwelling from deep within the earth that can provide us with abundant supplies of gas and petroleum? However far-fetched these ideas seem, they are supported by a growing body of evidence, and by the indisputable stature and seriousness Gold brings to any scientific debate. In this book we see a brilliant and boldly original thinker, increasingly a rarity in modern science, as he develops potentially revolutionary ideas about how our world works.
Environmental Microbiology and Microbial Ecology
Author: Larry L. Barton
Publisher: John Wiley & Sons
ISBN: 1118966260
Category : Science
Languages : en
Pages : 467
Book Description
An authoritative overview of the ecological activities of microbes in the biosphere Environmental Microbiology and Microbial Ecology presents a broad overview of microbial activity and microbes' interactions with their environments and communities. Adopting an integrative approach, this text covers both conventional ecological issues as well as cross-disciplinary investigations that combine facets of microbiology, ecology, environmental science and engineering, molecular biology, and biochemistry. Focusing primarily on single-cell forms of prokaryotes — and cellular forms of algae, fungi, and protozoans — this book enables readers to gain insight into the fundamental methodologies for the characterization of microorganisms in the biosphere. The authors draw from decades of experience to examine the environmental processes mediated by microorganisms and explore the interactions between microorganisms and higher life forms. Highly relevant to modern readers, this book examines topics including the ecology of microorganisms in engineered environments, microbial phylogeny and interactions, microbial processes in relation to environmental pollution, and many more. Now in its second edition, this book features updated references and major revisions to chapters on assessing microbial communities, community relationships, and their global impact. New content such as effective public communication of research findings and advice on scientific article review equips readers with practical real-world skills. Explores the activities of microorganisms in specific environments with case studies and actual research data Highlights how prominent microbial biologists address significant microbial ecology issues Offers guidance on scientific communication, including scientific presentations and grant preparation Includes plentiful illustrations and examples of microbial interactions, community structures, and human-bacterial connections Provides chapter summaries, review questions, selected reading lists, a complete glossary, and critical thinking exercises Environmental Microbiology and Microbial Ecology is an ideal textbook for graduate and advanced undergraduate courses in biology, microbiology, ecology, and environmental science, while also serving as a current and informative reference for microbiologists, cell and molecular biologists, ecologists, and environmental professionals.
Publisher: John Wiley & Sons
ISBN: 1118966260
Category : Science
Languages : en
Pages : 467
Book Description
An authoritative overview of the ecological activities of microbes in the biosphere Environmental Microbiology and Microbial Ecology presents a broad overview of microbial activity and microbes' interactions with their environments and communities. Adopting an integrative approach, this text covers both conventional ecological issues as well as cross-disciplinary investigations that combine facets of microbiology, ecology, environmental science and engineering, molecular biology, and biochemistry. Focusing primarily on single-cell forms of prokaryotes — and cellular forms of algae, fungi, and protozoans — this book enables readers to gain insight into the fundamental methodologies for the characterization of microorganisms in the biosphere. The authors draw from decades of experience to examine the environmental processes mediated by microorganisms and explore the interactions between microorganisms and higher life forms. Highly relevant to modern readers, this book examines topics including the ecology of microorganisms in engineered environments, microbial phylogeny and interactions, microbial processes in relation to environmental pollution, and many more. Now in its second edition, this book features updated references and major revisions to chapters on assessing microbial communities, community relationships, and their global impact. New content such as effective public communication of research findings and advice on scientific article review equips readers with practical real-world skills. Explores the activities of microorganisms in specific environments with case studies and actual research data Highlights how prominent microbial biologists address significant microbial ecology issues Offers guidance on scientific communication, including scientific presentations and grant preparation Includes plentiful illustrations and examples of microbial interactions, community structures, and human-bacterial connections Provides chapter summaries, review questions, selected reading lists, a complete glossary, and critical thinking exercises Environmental Microbiology and Microbial Ecology is an ideal textbook for graduate and advanced undergraduate courses in biology, microbiology, ecology, and environmental science, while also serving as a current and informative reference for microbiologists, cell and molecular biologists, ecologists, and environmental professionals.
Deep Carbon
Author: Beth N. Orcutt
Publisher: Cambridge University Press
ISBN: 1108477496
Category : Nature
Languages : en
Pages : 687
Book Description
A comprehensive guide to carbon inside Earth - its quantities, movements, forms, origins, changes over time and impact on planetary processes. This title is also available as Open Access on Cambridge Core.
Publisher: Cambridge University Press
ISBN: 1108477496
Category : Nature
Languages : en
Pages : 687
Book Description
A comprehensive guide to carbon inside Earth - its quantities, movements, forms, origins, changes over time and impact on planetary processes. This title is also available as Open Access on Cambridge Core.
Carbon in Earth's Interior
Author: Craig E. Manning
Publisher: John Wiley & Sons
ISBN: 1119508231
Category : Science
Languages : en
Pages : 373
Book Description
Carbon in Earth's fluid envelopes - the atmosphere, biosphere, and hydrosphere, plays a fundamental role in our planet's climate system and a central role in biology, the environment, and the economy of earth system. The source and original quantity of carbon in our planet is uncertain, as are the identities and relative importance of early chemical processes associated with planetary differentiation. Numerous lines of evidence point to the early and continuing exchange of substantial carbon between Earth's surface and its interior, including diamonds, carbon-rich mantle-derived magmas, carbonate rocks in subduction zones and springs carrying deeply sourced carbon-bearing gases. Thus, there is little doubt that a substantial amount of carbon resides in our planet's interior. Yet, while we know it must be present, carbon's forms, transformations and movements at conditions relevant to the interiors of Earth and other planets remain uncertain and untapped. Volume highlights include: - Reviews key, general topics, such as carbonate minerals, the deep carbon cycle, and carbon in magmas or fluids - Describes new results at the frontiers of the field with presenting results on carbon in minerals, melts, and fluids at extreme conditions of planetary interiors - Brings together emerging insights into carbon's forms, transformations and movements through study of the dynamics, structure, stability and reactivity of carbon-based natural materials - Reviews emerging new insights into the properties of allied substances that carry carbon, into the rates of chemical and physical transformations, and into the complex interactions between moving fluids, magmas, and rocks to the interiors of Earth and other planets - Spans the various chemical redox states of carbon, from reduced hydrocarbons to zero-valent diamond and graphite to oxidized CO2 and carbonates - Captures and synthesizes the exciting results of recent, focused efforts in an emerging scientific discipline - Reports advances over the last decade that have led to a major leap forward in our understanding of carbon science - Compiles the range of methods that can be tapped tap from the deep carbon community, which includes experimentalists, first principles theorists, thermodynamic modelers and geodynamicists - Represents a reference point for future deep carbon science research Carbon in Planetary Interiors will be a valuable resource for researchers and students who study the Earth's interior. The topics of this volume are interdisciplinary, and therefore will be useful to professionals from a wide variety of fields in the Earth Sciences, such as mineral physics, petrology, geochemistry, experimentalists, first principles theorists, thermodynamics, material science, chemistry, geophysics and geodynamics.
Publisher: John Wiley & Sons
ISBN: 1119508231
Category : Science
Languages : en
Pages : 373
Book Description
Carbon in Earth's fluid envelopes - the atmosphere, biosphere, and hydrosphere, plays a fundamental role in our planet's climate system and a central role in biology, the environment, and the economy of earth system. The source and original quantity of carbon in our planet is uncertain, as are the identities and relative importance of early chemical processes associated with planetary differentiation. Numerous lines of evidence point to the early and continuing exchange of substantial carbon between Earth's surface and its interior, including diamonds, carbon-rich mantle-derived magmas, carbonate rocks in subduction zones and springs carrying deeply sourced carbon-bearing gases. Thus, there is little doubt that a substantial amount of carbon resides in our planet's interior. Yet, while we know it must be present, carbon's forms, transformations and movements at conditions relevant to the interiors of Earth and other planets remain uncertain and untapped. Volume highlights include: - Reviews key, general topics, such as carbonate minerals, the deep carbon cycle, and carbon in magmas or fluids - Describes new results at the frontiers of the field with presenting results on carbon in minerals, melts, and fluids at extreme conditions of planetary interiors - Brings together emerging insights into carbon's forms, transformations and movements through study of the dynamics, structure, stability and reactivity of carbon-based natural materials - Reviews emerging new insights into the properties of allied substances that carry carbon, into the rates of chemical and physical transformations, and into the complex interactions between moving fluids, magmas, and rocks to the interiors of Earth and other planets - Spans the various chemical redox states of carbon, from reduced hydrocarbons to zero-valent diamond and graphite to oxidized CO2 and carbonates - Captures and synthesizes the exciting results of recent, focused efforts in an emerging scientific discipline - Reports advances over the last decade that have led to a major leap forward in our understanding of carbon science - Compiles the range of methods that can be tapped tap from the deep carbon community, which includes experimentalists, first principles theorists, thermodynamic modelers and geodynamicists - Represents a reference point for future deep carbon science research Carbon in Planetary Interiors will be a valuable resource for researchers and students who study the Earth's interior. The topics of this volume are interdisciplinary, and therefore will be useful to professionals from a wide variety of fields in the Earth Sciences, such as mineral physics, petrology, geochemistry, experimentalists, first principles theorists, thermodynamics, material science, chemistry, geophysics and geodynamics.
Manual of Environmental Microbiology
Author: Christon J. Hurst
Publisher: American Society for Microbiology Press
ISBN: 1555813798
Category : Science
Languages : en
Pages : 3023
Book Description
The most definitive manual of microbes in air, water, and soil and their impact on human health and welfare. • Incorporates a summary of the latest methodology used to study the activity and fate of microorganisms in various environments. • Synthesizes the latest information on the assessment of microbial presence and microbial activity in natural and artificial environments. • Features a section on biotransformation and biodegradation. • Serves as an indispensable reference for environmental microbiologists, microbial ecologists, and environmental engineers, as well as those interested in human diseases, water and wastewater treatment, and biotechnology.
Publisher: American Society for Microbiology Press
ISBN: 1555813798
Category : Science
Languages : en
Pages : 3023
Book Description
The most definitive manual of microbes in air, water, and soil and their impact on human health and welfare. • Incorporates a summary of the latest methodology used to study the activity and fate of microorganisms in various environments. • Synthesizes the latest information on the assessment of microbial presence and microbial activity in natural and artificial environments. • Features a section on biotransformation and biodegradation. • Serves as an indispensable reference for environmental microbiologists, microbial ecologists, and environmental engineers, as well as those interested in human diseases, water and wastewater treatment, and biotechnology.
Their World: A Diversity of Microbial Environments
Author: Christon J. Hurst
Publisher: Springer
ISBN: 9783319280691
Category : Science
Languages : en
Pages : 0
Book Description
This volume summarizes recent advances in environmental microbiology by providing fascinating insights into the diversity of microbial life that exists on our planet. The first two chapters present theoretical perspectives that help to consolidate our understanding of evolution as an adaptive process by which the niche and habitat of each species develop in a manner that interconnects individual components of an ecosystem. This results in communities that function by simultaneously coordinating their metabolic and physiologic actions. The third contribution addresses the fossil record of microorganisms, and the subsequent chapters then introduce the microbial life that currently exists in various terrestrial and aquatic ecosystems. Coverage of the geosphere addresses endolithic organisms, life in caves and the deep continental biosphere, including how subsurface microbial life may impact spent nuclear fuel repositories. The discussion of the hydrosphere includes hypersaline environments and arctic food chains. By better understanding examples from the micro biosphere, we can elucidate the many ways in which the niches of different species, both large and small, interconnect within the overlapping habitats of this world, which is governed by its microorganisms.
Publisher: Springer
ISBN: 9783319280691
Category : Science
Languages : en
Pages : 0
Book Description
This volume summarizes recent advances in environmental microbiology by providing fascinating insights into the diversity of microbial life that exists on our planet. The first two chapters present theoretical perspectives that help to consolidate our understanding of evolution as an adaptive process by which the niche and habitat of each species develop in a manner that interconnects individual components of an ecosystem. This results in communities that function by simultaneously coordinating their metabolic and physiologic actions. The third contribution addresses the fossil record of microorganisms, and the subsequent chapters then introduce the microbial life that currently exists in various terrestrial and aquatic ecosystems. Coverage of the geosphere addresses endolithic organisms, life in caves and the deep continental biosphere, including how subsurface microbial life may impact spent nuclear fuel repositories. The discussion of the hydrosphere includes hypersaline environments and arctic food chains. By better understanding examples from the micro biosphere, we can elucidate the many ways in which the niches of different species, both large and small, interconnect within the overlapping habitats of this world, which is governed by its microorganisms.