Author: Durgesh K. Jaiswal
Publisher: Frontiers Media SA
ISBN: 2832529569
Category : Science
Languages : en
Pages : 234
Book Description
Microbial Co-cultures: A New Era of Synthetic Biology and Metabolic Engineering
Author: Durgesh K. Jaiswal
Publisher: Frontiers Media SA
ISBN: 2832529569
Category : Science
Languages : en
Pages : 234
Book Description
Publisher: Frontiers Media SA
ISBN: 2832529569
Category : Science
Languages : en
Pages : 234
Book Description
Industrial Biotechnology
Author: Christoph Wittmann
Publisher: John Wiley & Sons
ISBN: 3527341811
Category : Science
Languages : en
Pages : 642
Book Description
The latest volume in the Advanced Biotechnology series provides an overview of the main product classes and platform chemicals produced by biotechnological processes today, with applications in the food, healthcare and fine chemical industries. Alongside the production of drugs and flavors as well as amino acids, bio-based monomers and polymers and biofuels, basic insights are also given as to the biotechnological processes yielding such products and how large-scale production may be enabled and improved. Of interest to biotechnologists, bio and chemical engineers, as well as those working in the biotechnological, chemical, and food industries.
Publisher: John Wiley & Sons
ISBN: 3527341811
Category : Science
Languages : en
Pages : 642
Book Description
The latest volume in the Advanced Biotechnology series provides an overview of the main product classes and platform chemicals produced by biotechnological processes today, with applications in the food, healthcare and fine chemical industries. Alongside the production of drugs and flavors as well as amino acids, bio-based monomers and polymers and biofuels, basic insights are also given as to the biotechnological processes yielding such products and how large-scale production may be enabled and improved. Of interest to biotechnologists, bio and chemical engineers, as well as those working in the biotechnological, chemical, and food industries.
Starvation in Bacteria
Author: S. Kjelleberg
Publisher: Springer Science & Business Media
ISBN: 1489924396
Category : Medical
Languages : en
Pages : 288
Book Description
Concerted efforts to study starvation and survival of nondifferentiating vegeta tive heterotrophic bacteria have been made with various degrees of intensity, in different bacteria and contexts, over more than the last 30 years. As with bacterial growth in natural ecosystem conditions, these research efforts have been intermittent, with rather long periods of limited or no production in between. While several important and well-received reviews and proceedings on the topic of this monograph have been published during the last three to four decades, the last few years have seen a marked increase in reviews on starvation survival in non-spore-forming bacteria. This increase reflects a realization that the biology of bacteria in natural conditions is generally not that of logarithmic growth and that we have very limited information on the physiology of the energy-and nutrient-limited phases of the life cyde of the bacterial cello The growing interest in nongrowing bacteria also sterns from the more recent advances on the molecular basis of the starvation-induced nongrowing bacterial cello The identification of starvation-specific gene and protein re sponders in Escherichia coli as weIl as other bacterial species has provided molecular handles for our attempts to decipher the "differentiation-like" responses and programs that nondifferentiating bacteria exhibit on nutrient limited growth arrest. Severallaboratories have contributed greatly to the progress made in life after-log research.
Publisher: Springer Science & Business Media
ISBN: 1489924396
Category : Medical
Languages : en
Pages : 288
Book Description
Concerted efforts to study starvation and survival of nondifferentiating vegeta tive heterotrophic bacteria have been made with various degrees of intensity, in different bacteria and contexts, over more than the last 30 years. As with bacterial growth in natural ecosystem conditions, these research efforts have been intermittent, with rather long periods of limited or no production in between. While several important and well-received reviews and proceedings on the topic of this monograph have been published during the last three to four decades, the last few years have seen a marked increase in reviews on starvation survival in non-spore-forming bacteria. This increase reflects a realization that the biology of bacteria in natural conditions is generally not that of logarithmic growth and that we have very limited information on the physiology of the energy-and nutrient-limited phases of the life cyde of the bacterial cello The growing interest in nongrowing bacteria also sterns from the more recent advances on the molecular basis of the starvation-induced nongrowing bacterial cello The identification of starvation-specific gene and protein re sponders in Escherichia coli as weIl as other bacterial species has provided molecular handles for our attempts to decipher the "differentiation-like" responses and programs that nondifferentiating bacteria exhibit on nutrient limited growth arrest. Severallaboratories have contributed greatly to the progress made in life after-log research.
Biodefense in the Age of Synthetic Biology
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309465184
Category : Technology & Engineering
Languages : en
Pages : 189
Book Description
Scientific advances over the past several decades have accelerated the ability to engineer existing organisms and to potentially create novel ones not found in nature. Synthetic biology, which collectively refers to concepts, approaches, and tools that enable the modification or creation of biological organisms, is being pursued overwhelmingly for beneficial purposes ranging from reducing the burden of disease to improving agricultural yields to remediating pollution. Although the contributions synthetic biology can make in these and other areas hold great promise, it is also possible to imagine malicious uses that could threaten U.S. citizens and military personnel. Making informed decisions about how to address such concerns requires a realistic assessment of the capabilities that could be misused. Biodefense in the Age of Synthetic Biology explores and envisions potential misuses of synthetic biology. This report develops a framework to guide an assessment of the security concerns related to advances in synthetic biology, assesses the levels of concern warranted for such advances, and identifies options that could help mitigate those concerns.
Publisher: National Academies Press
ISBN: 0309465184
Category : Technology & Engineering
Languages : en
Pages : 189
Book Description
Scientific advances over the past several decades have accelerated the ability to engineer existing organisms and to potentially create novel ones not found in nature. Synthetic biology, which collectively refers to concepts, approaches, and tools that enable the modification or creation of biological organisms, is being pursued overwhelmingly for beneficial purposes ranging from reducing the burden of disease to improving agricultural yields to remediating pollution. Although the contributions synthetic biology can make in these and other areas hold great promise, it is also possible to imagine malicious uses that could threaten U.S. citizens and military personnel. Making informed decisions about how to address such concerns requires a realistic assessment of the capabilities that could be misused. Biodefense in the Age of Synthetic Biology explores and envisions potential misuses of synthetic biology. This report develops a framework to guide an assessment of the security concerns related to advances in synthetic biology, assesses the levels of concern warranted for such advances, and identifies options that could help mitigate those concerns.
Industrialization of Biology
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309316553
Category : Science
Languages : en
Pages : 158
Book Description
The tremendous progress in biology over the last half century - from Watson and Crick's elucidation of the structure of DNA to today's astonishing, rapid progress in the field of synthetic biology - has positioned us for significant innovation in chemical production. New bio-based chemicals, improved public health through improved drugs and diagnostics, and biofuels that reduce our dependency on oil are all results of research and innovation in the biological sciences. In the past decade, we have witnessed major advances made possible by biotechnology in areas such as rapid, low-cost DNA sequencing, metabolic engineering, and high-throughput screening. The manufacturing of chemicals using biological synthesis and engineering could expand even faster. A proactive strategy - implemented through the development of a technical roadmap similar to those that enabled sustained growth in the semiconductor industry and our explorations of space - is needed if we are to realize the widespread benefits of accelerating the industrialization of biology. Industrialization of Biology presents such a roadmap to achieve key technical milestones for chemical manufacturing through biological routes. This report examines the technical, economic, and societal factors that limit the adoption of bioprocessing in the chemical industry today and which, if surmounted, would markedly accelerate the advanced manufacturing of chemicals via industrial biotechnology. Working at the interface of synthetic chemistry, metabolic engineering, molecular biology, and synthetic biology, Industrialization of Biology identifies key technical goals for next-generation chemical manufacturing, then identifies the gaps in knowledge, tools, techniques, and systems required to meet those goals, and targets and timelines for achieving them. This report also considers the skills necessary to accomplish the roadmap goals, and what training opportunities are required to produce the cadre of skilled scientists and engineers needed.
Publisher: National Academies Press
ISBN: 0309316553
Category : Science
Languages : en
Pages : 158
Book Description
The tremendous progress in biology over the last half century - from Watson and Crick's elucidation of the structure of DNA to today's astonishing, rapid progress in the field of synthetic biology - has positioned us for significant innovation in chemical production. New bio-based chemicals, improved public health through improved drugs and diagnostics, and biofuels that reduce our dependency on oil are all results of research and innovation in the biological sciences. In the past decade, we have witnessed major advances made possible by biotechnology in areas such as rapid, low-cost DNA sequencing, metabolic engineering, and high-throughput screening. The manufacturing of chemicals using biological synthesis and engineering could expand even faster. A proactive strategy - implemented through the development of a technical roadmap similar to those that enabled sustained growth in the semiconductor industry and our explorations of space - is needed if we are to realize the widespread benefits of accelerating the industrialization of biology. Industrialization of Biology presents such a roadmap to achieve key technical milestones for chemical manufacturing through biological routes. This report examines the technical, economic, and societal factors that limit the adoption of bioprocessing in the chemical industry today and which, if surmounted, would markedly accelerate the advanced manufacturing of chemicals via industrial biotechnology. Working at the interface of synthetic chemistry, metabolic engineering, molecular biology, and synthetic biology, Industrialization of Biology identifies key technical goals for next-generation chemical manufacturing, then identifies the gaps in knowledge, tools, techniques, and systems required to meet those goals, and targets and timelines for achieving them. This report also considers the skills necessary to accomplish the roadmap goals, and what training opportunities are required to produce the cadre of skilled scientists and engineers needed.
Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants
Author: Erick J. Vandamme
Publisher: John Wiley & Sons
ISBN: 3527337342
Category : Science
Languages : en
Pages : 580
Book Description
Vitamins are a group of physiologically very important, chemically quite complex organic compounds, that are essential for humans and animals. Some vitamins and other growth factors behave as antioxidants, while some can be considered as biopigments. As their chemical synthesis is laborious, their biotechnology-based synthesis and production via microbial fermentation has gained substantial interest within the last decades. Recent progress in microbial genetics and in metabolic engineering and implementation of innovative bioprocess technology has led to a biotechnology-based industrial production of many vitamins and related compounds. Divided into three sections, this volume covers: 1. water-soluble vitamins 2. fat-soluble vitamin compounds and 3. other growth factors, biopigments, and antioxidants. They are all reviewed systematically: from natural occurrence and assays, via biosynthesis, strain development, to industrially-employed biotechnological syntheses and applications.
Publisher: John Wiley & Sons
ISBN: 3527337342
Category : Science
Languages : en
Pages : 580
Book Description
Vitamins are a group of physiologically very important, chemically quite complex organic compounds, that are essential for humans and animals. Some vitamins and other growth factors behave as antioxidants, while some can be considered as biopigments. As their chemical synthesis is laborious, their biotechnology-based synthesis and production via microbial fermentation has gained substantial interest within the last decades. Recent progress in microbial genetics and in metabolic engineering and implementation of innovative bioprocess technology has led to a biotechnology-based industrial production of many vitamins and related compounds. Divided into three sections, this volume covers: 1. water-soluble vitamins 2. fat-soluble vitamin compounds and 3. other growth factors, biopigments, and antioxidants. They are all reviewed systematically: from natural occurrence and assays, via biosynthesis, strain development, to industrially-employed biotechnological syntheses and applications.
Bioprocess Engineering
Author: Michael L. Shuler
Publisher:
ISBN: 9781292025995
Category : Biochemical engineering
Languages : en
Pages : 542
Book Description
For Senior-level and graduate courses in Biochemical Engineering, and for programs in Agricultural and Biological Engineering or Bioengineering. This concise yet comprehensive text introduces the essential concepts of bioprocessing-internal structure and functions of different types of microorganisms, major metabolic pathways, enzymes, microbial genetics, kinetics and stoichiometry of growth and product information-to traditional chemical engineers and those in related disciplines. It explores the engineering principles necessary for bioprocess synthesis and design, and illustrates the application of these principles to modern biotechnology for production of pharmaceuticals and biologics, solution of environmental problems, production of commodities, and medical applications.
Publisher:
ISBN: 9781292025995
Category : Biochemical engineering
Languages : en
Pages : 542
Book Description
For Senior-level and graduate courses in Biochemical Engineering, and for programs in Agricultural and Biological Engineering or Bioengineering. This concise yet comprehensive text introduces the essential concepts of bioprocessing-internal structure and functions of different types of microorganisms, major metabolic pathways, enzymes, microbial genetics, kinetics and stoichiometry of growth and product information-to traditional chemical engineers and those in related disciplines. It explores the engineering principles necessary for bioprocess synthesis and design, and illustrates the application of these principles to modern biotechnology for production of pharmaceuticals and biologics, solution of environmental problems, production of commodities, and medical applications.
Environmental Microbiology: Fundamentals and Applications
Author: Jean-Claude Bertrand
Publisher: Springer
ISBN: 940179118X
Category : Science
Languages : en
Pages : 933
Book Description
This book is a treatise on microbial ecology that covers traditional and cutting-edge issues in the ecology of microbes in the biosphere. It emphasizes on study tools, microbial taxonomy and the fundamentals of microbial activities and interactions within their communities and environment as well as on the related food web dynamics and biogeochemical cycling. The work exceeds the traditional domain of microbial ecology by revisiting the evolution of cellular prokaryotes and eukaryotes and stressing the general principles of ecology. The overview of the topics, authored by more than 80 specialists, is one of the broadest in the field of environmental microbiology. The overview of the topics, authored by more than 80 specialists, is one of the broadest in the field of environmental microbiology.
Publisher: Springer
ISBN: 940179118X
Category : Science
Languages : en
Pages : 933
Book Description
This book is a treatise on microbial ecology that covers traditional and cutting-edge issues in the ecology of microbes in the biosphere. It emphasizes on study tools, microbial taxonomy and the fundamentals of microbial activities and interactions within their communities and environment as well as on the related food web dynamics and biogeochemical cycling. The work exceeds the traditional domain of microbial ecology by revisiting the evolution of cellular prokaryotes and eukaryotes and stressing the general principles of ecology. The overview of the topics, authored by more than 80 specialists, is one of the broadest in the field of environmental microbiology. The overview of the topics, authored by more than 80 specialists, is one of the broadest in the field of environmental microbiology.
Metabolic Engineering
Author: Sang Yup Lee
Publisher: John Wiley & Sons
ISBN: 352782345X
Category : Science
Languages : en
Pages : 1075
Book Description
Learn more about foundational and advanced topics in metabolic engineering in this comprehensive resource edited by leaders in the field Metabolic Engineering: Concepts and Applications delivers a one-stop resource for readers seeking a complete description of the concepts, models, and applications of metabolic engineering. This guide offers practical insights into the metabolic engineering of major cell lines, including E. Coli, Bacillus and Yarrowia Lipolytica, and organisms, including human, animal, and plant). The distinguished editors also offer readers resources on microbiome engineering and the use of metabolic engineering in bioremediation. Written in two parts, Metabolic Engineering begins with the essential models and strategies of the field, like Flux Balance Analysis, Quantitative Flux Analysis, and Proteome Constrained Models. It also provides an overview of topics like Pathway Design, Metabolomics, and Genome Editing of Bacteria and Eukarya. The second part contains insightful descriptions of the practical applications of metabolic engineering, including specific examples that shed light on the topics within. In addition to subjects like the metabolic engineering of animals, humans, and plants, you’ll learn more about: Metabolic engineering concepts and a historical perspective on their development The different modes of analysis, including flux balance analysis and quantitative flux analysis An illuminating and complete discussion of the thermodynamics of metabolic pathways The Genome architecture of E. coli, as well as genome editing of both bacteria and eukarya An in-depth treatment of the application of metabolic engineering techniques to organisms including corynebacterial, bacillus, and pseudomonas, and more Perfect for students of biotechnology, bioengineers, and biotechnologists, Metabolic Engineering: Concepts and Applications also has a place on the bookshelves of research institutes, biotechnological institutes and industry labs, and university libraries. It's comprehensive treatment of all relevant metabolic engineering concepts, models, and applications will be of use to practicing biotechnologists and bioengineers who wish to solidify their understanding of the field.
Publisher: John Wiley & Sons
ISBN: 352782345X
Category : Science
Languages : en
Pages : 1075
Book Description
Learn more about foundational and advanced topics in metabolic engineering in this comprehensive resource edited by leaders in the field Metabolic Engineering: Concepts and Applications delivers a one-stop resource for readers seeking a complete description of the concepts, models, and applications of metabolic engineering. This guide offers practical insights into the metabolic engineering of major cell lines, including E. Coli, Bacillus and Yarrowia Lipolytica, and organisms, including human, animal, and plant). The distinguished editors also offer readers resources on microbiome engineering and the use of metabolic engineering in bioremediation. Written in two parts, Metabolic Engineering begins with the essential models and strategies of the field, like Flux Balance Analysis, Quantitative Flux Analysis, and Proteome Constrained Models. It also provides an overview of topics like Pathway Design, Metabolomics, and Genome Editing of Bacteria and Eukarya. The second part contains insightful descriptions of the practical applications of metabolic engineering, including specific examples that shed light on the topics within. In addition to subjects like the metabolic engineering of animals, humans, and plants, you’ll learn more about: Metabolic engineering concepts and a historical perspective on their development The different modes of analysis, including flux balance analysis and quantitative flux analysis An illuminating and complete discussion of the thermodynamics of metabolic pathways The Genome architecture of E. coli, as well as genome editing of both bacteria and eukarya An in-depth treatment of the application of metabolic engineering techniques to organisms including corynebacterial, bacillus, and pseudomonas, and more Perfect for students of biotechnology, bioengineers, and biotechnologists, Metabolic Engineering: Concepts and Applications also has a place on the bookshelves of research institutes, biotechnological institutes and industry labs, and university libraries. It's comprehensive treatment of all relevant metabolic engineering concepts, models, and applications will be of use to practicing biotechnologists and bioengineers who wish to solidify their understanding of the field.
Systems Biology and Synthetic Biology
Author: Pengcheng Fu
Publisher: John Wiley & Sons
ISBN: 9780470437971
Category : Technology & Engineering
Languages : en
Pages : 672
Book Description
The genomic revolution has opened up systematic investigations and engineering designs for various life forms. Systems biology and synthetic biology are emerging as two complementary approaches, which embody the breakthrough in biology and invite application of engineering principles. Systems Biology and Synthetic Biology emphasizes the similarity between biology and engineering at the system level, which is important for applying systems and engineering theories to biology problems. This book demonstrates to students, researchers, and industry that systems biology relies on synthetic biology technologies to study biological systems, while synthetic biology depends on knowledge obtained from systems biology approaches.
Publisher: John Wiley & Sons
ISBN: 9780470437971
Category : Technology & Engineering
Languages : en
Pages : 672
Book Description
The genomic revolution has opened up systematic investigations and engineering designs for various life forms. Systems biology and synthetic biology are emerging as two complementary approaches, which embody the breakthrough in biology and invite application of engineering principles. Systems Biology and Synthetic Biology emphasizes the similarity between biology and engineering at the system level, which is important for applying systems and engineering theories to biology problems. This book demonstrates to students, researchers, and industry that systems biology relies on synthetic biology technologies to study biological systems, while synthetic biology depends on knowledge obtained from systems biology approaches.