Author: Valery Ya. Rudyak
Publisher: Springer
ISBN: 3319755234
Category : Science
Languages : en
Pages : 258
Book Description
This book describes physical, mathematical and experimental methods to model flows in micro- and nanofluidic devices. It takes in consideration flows in channels with a characteristic size between several hundreds of micrometers to several nanometers. Methods based on solving kinetic equations, coupled kinetic-hydrodynamic description, and molecular dynamics method are used. Based on detailed measurements of pressure distributions along the straight and bent microchannels, the hydraulic resistance coefficients are refined. Flows of disperse fluids (including disperse nanofluids) are considered in detail. Results of hydrodynamic modeling of the simplest micromixers are reported. Mixing of fluids in a Y-type and T-type micromixers is considered. The authors present a systematic study of jet flows, jets structure and laminar-turbulent transition. The influence of sound on the microjet structure is considered. New phenomena associated with turbulization and relaminarization of the mixing layer of microjets are discussed. Based on the conducted experimental investigations, the authors propose a chart of microjet flow regimes. When addressing the modeling of microflows of nanofluids, the authors show where conventional hydrodynamic approaches can be applied and where more complicated models are needed, and they analyze the hydrodynamic stability of the nanofluid flows. The last part of the book is devoted the statistical theory of the transport processes in fluids under confined conditions. The authors present the constitutive relations and the formulas for transport coefficients. In conclusion the authors present a rigorous analysis of the viscosity and diffusion in nanochannels and in porous media.
Micro- and Nanoflows
Author: Valery Ya. Rudyak
Publisher: Springer
ISBN: 3319755234
Category : Science
Languages : en
Pages : 258
Book Description
This book describes physical, mathematical and experimental methods to model flows in micro- and nanofluidic devices. It takes in consideration flows in channels with a characteristic size between several hundreds of micrometers to several nanometers. Methods based on solving kinetic equations, coupled kinetic-hydrodynamic description, and molecular dynamics method are used. Based on detailed measurements of pressure distributions along the straight and bent microchannels, the hydraulic resistance coefficients are refined. Flows of disperse fluids (including disperse nanofluids) are considered in detail. Results of hydrodynamic modeling of the simplest micromixers are reported. Mixing of fluids in a Y-type and T-type micromixers is considered. The authors present a systematic study of jet flows, jets structure and laminar-turbulent transition. The influence of sound on the microjet structure is considered. New phenomena associated with turbulization and relaminarization of the mixing layer of microjets are discussed. Based on the conducted experimental investigations, the authors propose a chart of microjet flow regimes. When addressing the modeling of microflows of nanofluids, the authors show where conventional hydrodynamic approaches can be applied and where more complicated models are needed, and they analyze the hydrodynamic stability of the nanofluid flows. The last part of the book is devoted the statistical theory of the transport processes in fluids under confined conditions. The authors present the constitutive relations and the formulas for transport coefficients. In conclusion the authors present a rigorous analysis of the viscosity and diffusion in nanochannels and in porous media.
Publisher: Springer
ISBN: 3319755234
Category : Science
Languages : en
Pages : 258
Book Description
This book describes physical, mathematical and experimental methods to model flows in micro- and nanofluidic devices. It takes in consideration flows in channels with a characteristic size between several hundreds of micrometers to several nanometers. Methods based on solving kinetic equations, coupled kinetic-hydrodynamic description, and molecular dynamics method are used. Based on detailed measurements of pressure distributions along the straight and bent microchannels, the hydraulic resistance coefficients are refined. Flows of disperse fluids (including disperse nanofluids) are considered in detail. Results of hydrodynamic modeling of the simplest micromixers are reported. Mixing of fluids in a Y-type and T-type micromixers is considered. The authors present a systematic study of jet flows, jets structure and laminar-turbulent transition. The influence of sound on the microjet structure is considered. New phenomena associated with turbulization and relaminarization of the mixing layer of microjets are discussed. Based on the conducted experimental investigations, the authors propose a chart of microjet flow regimes. When addressing the modeling of microflows of nanofluids, the authors show where conventional hydrodynamic approaches can be applied and where more complicated models are needed, and they analyze the hydrodynamic stability of the nanofluid flows. The last part of the book is devoted the statistical theory of the transport processes in fluids under confined conditions. The authors present the constitutive relations and the formulas for transport coefficients. In conclusion the authors present a rigorous analysis of the viscosity and diffusion in nanochannels and in porous media.
Microflows and Nanoflows
Author: George Karniadakis
Publisher: Springer Science & Business Media
ISBN: 0387286764
Category : Mathematics
Languages : en
Pages : 824
Book Description
Subject area has witnessed explosive growth during the last decade and the technology is progressing at an astronomical rate. Previous edition was first to focus exclusively on flow physics within microdevices. It sold over 900 copies in North America since 11/01. New edition is 40 percent longer, with four new chapters on recent topics including Nanofluidics.
Publisher: Springer Science & Business Media
ISBN: 0387286764
Category : Mathematics
Languages : en
Pages : 824
Book Description
Subject area has witnessed explosive growth during the last decade and the technology is progressing at an astronomical rate. Previous edition was first to focus exclusively on flow physics within microdevices. It sold over 900 copies in North America since 11/01. New edition is 40 percent longer, with four new chapters on recent topics including Nanofluidics.
Detection of Pathogens in Water Using Micro and Nano-Technology
Author: Giampaolo Zuccheri
Publisher: IWA Publishing
ISBN: 1780401086
Category : Science
Languages : en
Pages : 314
Book Description
Detection of Pathogens in Water Using Micro and Nano-Technology aims to promote the uptake of innovative micro and nano-technological approaches towards the development of an integrated, cost-effective nano-biological sensor useful for security and environmental assays. The book describes the concerted efforts of a large European research project and the achievements of additional leading research groups. The reported knowledge and expertise should support in the innovation and integration of often separated unitary processes. Sampling, cell lysis and DNA/RNA extraction, DNA hybridisation detection micro- and nanosensors, microfluidics, together also with computational modelling and risk assessment can be integrated in the framework of the current and evolving European regulations and needs. The development and uptake of molecular methods is revolutionizing the field of waterborne pathogens detection, commonly performed with time-consuming cultural methods. The molecular detection methods are enabling the development of integrated instruments based on biosensor that will ultimately automate the full pathway of the microbiological analysis of water. Editors: Giampaolo Zuccheri, University of Bologna, Italy and Nikolaos Asproulis, Cranfield University, UK
Publisher: IWA Publishing
ISBN: 1780401086
Category : Science
Languages : en
Pages : 314
Book Description
Detection of Pathogens in Water Using Micro and Nano-Technology aims to promote the uptake of innovative micro and nano-technological approaches towards the development of an integrated, cost-effective nano-biological sensor useful for security and environmental assays. The book describes the concerted efforts of a large European research project and the achievements of additional leading research groups. The reported knowledge and expertise should support in the innovation and integration of often separated unitary processes. Sampling, cell lysis and DNA/RNA extraction, DNA hybridisation detection micro- and nanosensors, microfluidics, together also with computational modelling and risk assessment can be integrated in the framework of the current and evolving European regulations and needs. The development and uptake of molecular methods is revolutionizing the field of waterborne pathogens detection, commonly performed with time-consuming cultural methods. The molecular detection methods are enabling the development of integrated instruments based on biosensor that will ultimately automate the full pathway of the microbiological analysis of water. Editors: Giampaolo Zuccheri, University of Bologna, Italy and Nikolaos Asproulis, Cranfield University, UK
Micro/Nano Technology Systems for Biomedical Applications
Author: Chih-Ming Ho
Publisher: Oxford University Press
ISBN: 0191551384
Category : Science
Languages : en
Pages : 471
Book Description
In daily life, we are accustomed to working with length scales of feet or meters, but the building blocks from which our bodies are constructed are many orders of magnitude smaller. The technologies that are being developed to intervene at these minute scales have the potential to improve human health and significantly enrich our lives. Revolutionary micro/nano technology platforms have led to dramatic advances in sample preparation, analysis and cell culture. From the 1990s through to the very beginning of the twenty-first century, the focus was on the development of manufacturing technologies. Through elegant design and sophisticated fabrication, the micro- to nano-scale manipulation of fluids and particles has become routine. Since then, it has become possible to control molecular interactions at device surfaces, and optical manipulation, imaging and sensing techniques can also be incorporated. Micro/nano technology platforms are already being used to study and direct biological processes at the cellular and sub-cellular level, and to detect disease with greater sensitivity and specificity. The challenges and excitement in the near future will be in engineering these sophisticated, multifunctional devices to seamlessly interface with complex biological systems. Providing a clear guide that moves from molecules through devices to systems, this book reviews fundamental aspects of microfluidic devices, including fabrication, surface property control, pressure-driven and electrokinetic flow, and functions such as fluid mixing, particle sorting and molecular separations. The integration of optical and plasmonic imaging, optoelectronic tweezers for single particle manipulation, and optical and electrical signal transduction methods for biosensing are shown to provide extraordinary capabilities for bioanalytical and biomedical applications. These represent key areas of research that will lead to the next generation of micro/nano-based systems. Anyone working in this fast-changing field will benefit from this comprehensive review of the latest thinking, while researchers will find much to inspire and direct their work.
Publisher: Oxford University Press
ISBN: 0191551384
Category : Science
Languages : en
Pages : 471
Book Description
In daily life, we are accustomed to working with length scales of feet or meters, but the building blocks from which our bodies are constructed are many orders of magnitude smaller. The technologies that are being developed to intervene at these minute scales have the potential to improve human health and significantly enrich our lives. Revolutionary micro/nano technology platforms have led to dramatic advances in sample preparation, analysis and cell culture. From the 1990s through to the very beginning of the twenty-first century, the focus was on the development of manufacturing technologies. Through elegant design and sophisticated fabrication, the micro- to nano-scale manipulation of fluids and particles has become routine. Since then, it has become possible to control molecular interactions at device surfaces, and optical manipulation, imaging and sensing techniques can also be incorporated. Micro/nano technology platforms are already being used to study and direct biological processes at the cellular and sub-cellular level, and to detect disease with greater sensitivity and specificity. The challenges and excitement in the near future will be in engineering these sophisticated, multifunctional devices to seamlessly interface with complex biological systems. Providing a clear guide that moves from molecules through devices to systems, this book reviews fundamental aspects of microfluidic devices, including fabrication, surface property control, pressure-driven and electrokinetic flow, and functions such as fluid mixing, particle sorting and molecular separations. The integration of optical and plasmonic imaging, optoelectronic tweezers for single particle manipulation, and optical and electrical signal transduction methods for biosensing are shown to provide extraordinary capabilities for bioanalytical and biomedical applications. These represent key areas of research that will lead to the next generation of micro/nano-based systems. Anyone working in this fast-changing field will benefit from this comprehensive review of the latest thinking, while researchers will find much to inspire and direct their work.
Micro/Nano Devices for Blood Analysis
Author: Rui A. Lima
Publisher: MDPI
ISBN: 3039218247
Category : Technology & Engineering
Languages : en
Pages : 174
Book Description
The development of micro- and nanodevices for blood analysis is an interdisciplinary subject that demands the integration of several research fields, such as biotechnology, medicine, chemistry, informatics, optics, electronics, mechanics, and micro/nanotechnologies. Over the last few decades, there has been a notably fast development in the miniaturization of mechanical microdevices, later known as microelectromechanical systems (MEMS), which combine electrical and mechanical components at a microscale level. The integration of microflow and optical components in MEMS microdevices, as well as the development of micropumps and microvalves, have promoted the interest of several research fields dealing with fluid flow and transport phenomena happening in microscale devices. Microfluidic systems have many advantages over their macroscale counterparts, offering the ability to work with small sample volumes, providing good manipulation and control of samples, decreasing reaction times, and allowing parallel operations in one single step. As a consequence, microdevices offer great potential for the development of portable and point-of-care diagnostic devices, particularly for blood analysis. Moreover, the recent progress in nanotechnology has contributed to its increasing popularity, and has expanded the areas of application of microfluidic devices, including in the manipulation and analysis of flows on the scale of DNA, proteins, and nanoparticles (nanoflows). In this Special Issue, we invited contributions (original research papers, review articles, and brief communications) that focus on the latest advances and challenges in micro- and nanodevices for diagnostics and blood analysis, micro- and nanofluidics, technologies for flow visualization, MEMS, biochips, and lab-on-a-chip devices and their application to research and industry. We hope to provide an opportunity to the engineering and biomedical community to exchange knowledge and information and to bring together researchers who are interested in the general field of MEMS and micro/nanofluidics and, especially, in its applications to biomedical areas.
Publisher: MDPI
ISBN: 3039218247
Category : Technology & Engineering
Languages : en
Pages : 174
Book Description
The development of micro- and nanodevices for blood analysis is an interdisciplinary subject that demands the integration of several research fields, such as biotechnology, medicine, chemistry, informatics, optics, electronics, mechanics, and micro/nanotechnologies. Over the last few decades, there has been a notably fast development in the miniaturization of mechanical microdevices, later known as microelectromechanical systems (MEMS), which combine electrical and mechanical components at a microscale level. The integration of microflow and optical components in MEMS microdevices, as well as the development of micropumps and microvalves, have promoted the interest of several research fields dealing with fluid flow and transport phenomena happening in microscale devices. Microfluidic systems have many advantages over their macroscale counterparts, offering the ability to work with small sample volumes, providing good manipulation and control of samples, decreasing reaction times, and allowing parallel operations in one single step. As a consequence, microdevices offer great potential for the development of portable and point-of-care diagnostic devices, particularly for blood analysis. Moreover, the recent progress in nanotechnology has contributed to its increasing popularity, and has expanded the areas of application of microfluidic devices, including in the manipulation and analysis of flows on the scale of DNA, proteins, and nanoparticles (nanoflows). In this Special Issue, we invited contributions (original research papers, review articles, and brief communications) that focus on the latest advances and challenges in micro- and nanodevices for diagnostics and blood analysis, micro- and nanofluidics, technologies for flow visualization, MEMS, biochips, and lab-on-a-chip devices and their application to research and industry. We hope to provide an opportunity to the engineering and biomedical community to exchange knowledge and information and to bring together researchers who are interested in the general field of MEMS and micro/nanofluidics and, especially, in its applications to biomedical areas.
Nanoscale Flow
Author: Sarhan M. Musa
Publisher: CRC Press
ISBN: 1351831151
Category : Science
Languages : en
Pages : 270
Book Description
Understanding the physical properties and dynamical behavior of nanochannel flows has been of great interest in recent years and is important for the theoretical study of fluid dynamics and engineering applications in physics, chemistry, medicine, and electronics. The flows inside nanoscale pores are also important due to their highly beneficial drag and heat transfer properties. Nanoscale Flow: Advances, Modeling, and Applications presents the latest research in the multidisciplinary area of nanoscale flow. Featuring contributions from top inventors in industry, academia, and government, this comprehensive book: Highlights the current status of research on nucleate pool boiling heat transfer, flow boiling heat transfer, and critical heat flux (CHF) phenomena of nanofluids Describes two novel fractal models for pool boiling heat transfer of nanofluids, including subcooled pool boiling and nucleate pool boiling Explores thermal conductivity enhancement in nanofluids measured with a hot-wire calorimeter Discusses two-phase laminar mixed convection AL2O3–water nanofluid in an elliptic duct Explains the principles of molecular and omics imaging and spectroscopy techniques for cancer detection Analyzes fluid dynamics modeling of the tumor vasculature and drug transport Studies the properties of nanoscale particles and their impact on diagnosis, therapeutics, and theranostics Provides a brief background and review of medical nanoscale flow applications Contains useful appendices of physical constants, equations, common symbols, mathematical formulas, the periodic table, and more A valuable reference for engineers, scientists, and biologists, Nanoscale Flow: Advances, Modeling, and Applications is also designed for researchers, universities, industrial institutions, and government, giving it broad appeal.
Publisher: CRC Press
ISBN: 1351831151
Category : Science
Languages : en
Pages : 270
Book Description
Understanding the physical properties and dynamical behavior of nanochannel flows has been of great interest in recent years and is important for the theoretical study of fluid dynamics and engineering applications in physics, chemistry, medicine, and electronics. The flows inside nanoscale pores are also important due to their highly beneficial drag and heat transfer properties. Nanoscale Flow: Advances, Modeling, and Applications presents the latest research in the multidisciplinary area of nanoscale flow. Featuring contributions from top inventors in industry, academia, and government, this comprehensive book: Highlights the current status of research on nucleate pool boiling heat transfer, flow boiling heat transfer, and critical heat flux (CHF) phenomena of nanofluids Describes two novel fractal models for pool boiling heat transfer of nanofluids, including subcooled pool boiling and nucleate pool boiling Explores thermal conductivity enhancement in nanofluids measured with a hot-wire calorimeter Discusses two-phase laminar mixed convection AL2O3–water nanofluid in an elliptic duct Explains the principles of molecular and omics imaging and spectroscopy techniques for cancer detection Analyzes fluid dynamics modeling of the tumor vasculature and drug transport Studies the properties of nanoscale particles and their impact on diagnosis, therapeutics, and theranostics Provides a brief background and review of medical nanoscale flow applications Contains useful appendices of physical constants, equations, common symbols, mathematical formulas, the periodic table, and more A valuable reference for engineers, scientists, and biologists, Nanoscale Flow: Advances, Modeling, and Applications is also designed for researchers, universities, industrial institutions, and government, giving it broad appeal.
Micro and Smart Devices and Systems
Author: K. J. Vinoy
Publisher: Springer
ISBN: 8132219139
Category : Technology & Engineering
Languages : en
Pages : 509
Book Description
The book presents cutting-edge research in the emerging fields of micro, nano and smart devices and systems from experts working in these fields over the last decade. Most of the contributors have built devices or systems or developed processes or algorithms in these areas. The book is a unique collection of chapters from different areas with a common theme and is immensely useful to academic researchers and practitioners in the industry who work in this field.
Publisher: Springer
ISBN: 8132219139
Category : Technology & Engineering
Languages : en
Pages : 509
Book Description
The book presents cutting-edge research in the emerging fields of micro, nano and smart devices and systems from experts working in these fields over the last decade. Most of the contributors have built devices or systems or developed processes or algorithms in these areas. The book is a unique collection of chapters from different areas with a common theme and is immensely useful to academic researchers and practitioners in the industry who work in this field.
Microflows
Author: George Em Karniadakis
Publisher: Springer
ISBN: 9780387953243
Category : Mathematics
Languages : en
Pages : 340
Book Description
This monograph focusing on gas flows addresses mostly theoretical issues and develops semi-analytical models as well as numerical methods for stimulating micro flows. It is appropriate for researchers in fluid mechanics interested in this new flow field as well as for electrical or mechanical engineers or physicists who need to incorporate flow modeling into their work.
Publisher: Springer
ISBN: 9780387953243
Category : Mathematics
Languages : en
Pages : 340
Book Description
This monograph focusing on gas flows addresses mostly theoretical issues and develops semi-analytical models as well as numerical methods for stimulating micro flows. It is appropriate for researchers in fluid mechanics interested in this new flow field as well as for electrical or mechanical engineers or physicists who need to incorporate flow modeling into their work.
Advances in Molecular Nanotechnology Research and Application: 2012 Edition
Author:
Publisher: ScholarlyEditions
ISBN: 1464990743
Category : Technology & Engineering
Languages : en
Pages : 1624
Book Description
Advances in Molecular Nanotechnology Research and Application / 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Molecular Nanotechnology. The editors have built Advances in Molecular Nanotechnology Research and Application / 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Molecular Nanotechnology in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Molecular Nanotechnology Research and Application / 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Publisher: ScholarlyEditions
ISBN: 1464990743
Category : Technology & Engineering
Languages : en
Pages : 1624
Book Description
Advances in Molecular Nanotechnology Research and Application / 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Molecular Nanotechnology. The editors have built Advances in Molecular Nanotechnology Research and Application / 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Molecular Nanotechnology in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Molecular Nanotechnology Research and Application / 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Encyclopedia of Microfluidics and Nanofluidics
Author: Dongqing Li
Publisher: Springer Science & Business Media
ISBN: 0387324682
Category : Technology & Engineering
Languages : en
Pages : 2242
Book Description
Covering all aspects of transport phenomena on the nano- and micro-scale, this encyclopedia features over 750 entries in three alphabetically-arranged volumes including the most up-to-date research, insights, and applied techniques across all areas. Coverage includes electrical double-layers, optofluidics, DNC lab-on-a-chip, nanosensors, and more.
Publisher: Springer Science & Business Media
ISBN: 0387324682
Category : Technology & Engineering
Languages : en
Pages : 2242
Book Description
Covering all aspects of transport phenomena on the nano- and micro-scale, this encyclopedia features over 750 entries in three alphabetically-arranged volumes including the most up-to-date research, insights, and applied techniques across all areas. Coverage includes electrical double-layers, optofluidics, DNC lab-on-a-chip, nanosensors, and more.