Metrics, Norms, Inner Products, and Operator Theory

Metrics, Norms, Inner Products, and Operator Theory PDF Author: Christopher Heil
Publisher: Birkhäuser
ISBN: 3319653229
Category : Mathematics
Languages : en
Pages : 374

Get Book Here

Book Description
This text is a self-contained introduction to the three main families that we encounter in analysis – metric spaces, normed spaces, and inner product spaces – and to the operators that transform objects in one into objects in another. With an emphasis on the fundamental properties defining the spaces, this book guides readers to a deeper understanding of analysis and an appreciation of the field as the “science of functions.” Many important topics that are rarely presented in an accessible way to undergraduate students are included, such as unconditional convergence of series, Schauder bases for Banach spaces, the dual of lp topological isomorphisms, the Spectral Theorem, the Baire Category Theorem, and the Uniform Boundedness Principle. The text is constructed in such a way that instructors have the option whether to include more advanced topics. Written in an appealing and accessible style, Metrics, Norms, Inner Products, and Operator Theory is suitable for independent study or as the basis for an undergraduate-level course. Instructors have several options for building a course around the text depending on the level and interests of their students. Key features: Aimed at students who have a basic knowledge of undergraduate real analysis. All of the required background material is reviewed in the first chapter. Suitable for undergraduate-level courses; no familiarity with measure theory is required. Extensive exercises complement the text and provide opportunities for learning by doing. A separate solutions manual is available for instructors via the Birkhäuser website (www.springer.com/978-3-319-65321-1). Unique text providing an undergraduate-level introduction to metrics, norms, inner products, and their associated operator theory.

Metrics, Norms, Inner Products, and Operator Theory

Metrics, Norms, Inner Products, and Operator Theory PDF Author: Christopher Heil
Publisher: Birkhäuser
ISBN: 3319653229
Category : Mathematics
Languages : en
Pages : 374

Get Book Here

Book Description
This text is a self-contained introduction to the three main families that we encounter in analysis – metric spaces, normed spaces, and inner product spaces – and to the operators that transform objects in one into objects in another. With an emphasis on the fundamental properties defining the spaces, this book guides readers to a deeper understanding of analysis and an appreciation of the field as the “science of functions.” Many important topics that are rarely presented in an accessible way to undergraduate students are included, such as unconditional convergence of series, Schauder bases for Banach spaces, the dual of lp topological isomorphisms, the Spectral Theorem, the Baire Category Theorem, and the Uniform Boundedness Principle. The text is constructed in such a way that instructors have the option whether to include more advanced topics. Written in an appealing and accessible style, Metrics, Norms, Inner Products, and Operator Theory is suitable for independent study or as the basis for an undergraduate-level course. Instructors have several options for building a course around the text depending on the level and interests of their students. Key features: Aimed at students who have a basic knowledge of undergraduate real analysis. All of the required background material is reviewed in the first chapter. Suitable for undergraduate-level courses; no familiarity with measure theory is required. Extensive exercises complement the text and provide opportunities for learning by doing. A separate solutions manual is available for instructors via the Birkhäuser website (www.springer.com/978-3-319-65321-1). Unique text providing an undergraduate-level introduction to metrics, norms, inner products, and their associated operator theory.

Elements of Operator Theory

Elements of Operator Theory PDF Author: Carlos S. Kubrusly
Publisher: Springer Science & Business Media
ISBN: 1475733283
Category : Mathematics
Languages : en
Pages : 535

Get Book Here

Book Description
{\it Elements of Operatory Theory} is aimed at graduate students as well as a new generation of mathematicians and scientists who need to apply operator theory to their field. Written in a user-friendly, motivating style, fundamental topics are presented in a systematic fashion, i.e., set theory, algebraic structures, topological structures, Banach spaces, Hilbert spaces, culminating with the Spectral Theorem, one of the landmarks in the theory of operators on Hilbert spaces. The exposition is concept-driven and as much as possible avoids the formula-computational approach. Key features of this largely self-contained work include: * required background material to each chapter * fully rigorous proofs, over 300 of them, are specially tailored to the presentation and some are new * more than 100 examples and, in several cases, interesting counterexamples that demonstrate the frontiers of an important theorem * over 300 problems, many with hints * both problems and examples underscore further auxiliary results and extensions of the main theory; in this non-traditional framework, the reader is challenged and has a chance to prove the principal theorems anew This work is an excellent text for the classroom as well as a self-study resource for researchers. Prerequisites include an introduction to analysis and to functions of a complex variable, which most first-year graduate students in mathematics, engineering, or another formal science have already acquired. Measure theory and integration theory are required only for the last section of the final chapter.

Sampling: Theory and Applications

Sampling: Theory and Applications PDF Author: Stephen D. Casey
Publisher: Springer Nature
ISBN: 3030362914
Category : Mathematics
Languages : en
Pages : 210

Get Book Here

Book Description
The chapters of this volume are based on talks given at the eleventh international Sampling Theory and Applications conference held in 2015 at American University in Washington, D.C. The papers highlight state-of-the-art advances and trends in sampling theory and related areas of application, such as signal and image processing. Chapters have been written by prominent mathematicians, applied scientists, and engineers with an expertise in sampling theory. Claude Shannon’s 100th birthday is also celebrated, including an introductory essay that highlights Shannon’s profound influence on the field. The topics covered include both theory and applications, such as: • Compressed sensing• Non-uniform and wave sampling• A-to-D conversion• Finite rate of innovation• Time-frequency analysis• Operator theory• Mobile sampling issues Sampling: Theory and Applications is ideal for mathematicians, engineers, and applied scientists working in sampling theory or related areas.

Modulation Spaces

Modulation Spaces PDF Author: Árpád Bényi
Publisher: Springer Nature
ISBN: 1071603329
Category : Mathematics
Languages : en
Pages : 177

Get Book Here

Book Description
This monograph serves as a much-needed, self-contained reference on the topic of modulation spaces. By gathering together state-of-the-art developments and previously unexplored applications, readers will be motivated to make effective use of this topic in future research. Because modulation spaces have historically only received a cursory treatment, this book will fill a gap in time-frequency analysis literature, and offer readers a convenient and timely resource. Foundational concepts and definitions in functional, harmonic, and real analysis are reviewed in the first chapter, which is then followed by introducing modulation spaces. The focus then expands to the many valuable applications of modulation spaces, such as linear and multilinear pseudodifferential operators, and dispersive partial differential equations. Because it is almost entirely self-contained, these insights will be accessible to a wide audience of interested readers. Modulation Spaces will be an ideal reference for researchers in time-frequency analysis and nonlinear partial differential equations. It will also appeal to graduate students and seasoned researchers who seek an introduction to the time-frequency analysis of nonlinear dispersive partial differential equations.

The XFT Quadrature in Discrete Fourier Analysis

The XFT Quadrature in Discrete Fourier Analysis PDF Author: Rafael G. Campos
Publisher: Springer
ISBN: 3030134237
Category : Mathematics
Languages : en
Pages : 245

Get Book Here

Book Description
This book has two main objectives, the first of which is to extend the power of numerical Fourier analysis and to show by means of theoretical examples and numerous concrete applications that when computing discrete Fourier transforms of periodic and non periodic functions, the usual kernel matrix of the Fourier transform, the discrete Fourier transform (DFT), should be replaced by another kernel matrix, the eXtended Fourier transform (XFT), since the XFT matrix appears as a convergent quadrature of a more general transform, the fractional Fourier transform. In turn, the book’s second goal is to present the XFT matrix as a finite-dimensional transformation that links certain discrete operators in the same way that the corresponding continuous operators are related by the Fourier transform, and to show that the XFT matrix accordingly generates sequences of matrix operators that represent continuum operators, and which allow these operators to be studied from another perspective.

Topics in Classical and Modern Analysis

Topics in Classical and Modern Analysis PDF Author: Martha Abell
Publisher: Springer Nature
ISBN: 3030122778
Category : Mathematics
Languages : en
Pages : 384

Get Book Here

Book Description
Different aspects of harmonic analysis, complex analysis, sampling theory, approximation theory and related topics are covered in this volume. The topics included are Fourier analysis, Padè approximation, dynamical systems and difference operators, splines, Christoffel functions, best approximation, discrepancy theory and Jackson-type theorems of approximation. The articles of this collection were originated from the International Conference in Approximation Theory, held in Savannah, GA in 2017, and organized by the editors of this volume.

Excursions in Harmonic Analysis, Volume 6

Excursions in Harmonic Analysis, Volume 6 PDF Author: Matthew Hirn
Publisher: Springer Nature
ISBN: 3030696375
Category : Mathematics
Languages : en
Pages : 444

Get Book Here

Book Description
John J. Benedetto has had a profound influence not only on the direction of harmonic analysis and its applications, but also on the entire community of people involved in the field. The chapters in this volume – compiled on the occasion of his 80th birthday – are written by leading researchers in the field and pay tribute to John’s many significant and lasting achievements. Covering a wide range of topics in harmonic analysis and related areas, these chapters are organized into four main parts: harmonic analysis, wavelets and frames, sampling and signal processing, and compressed sensing and optimization. An introductory chapter also provides a brief overview of John’s life and mathematical career. This volume will be an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, engineering, and physics.

Introduction to Real Analysis

Introduction to Real Analysis PDF Author: Christopher Heil
Publisher: Springer
ISBN: 3030269035
Category : Mathematics
Languages : en
Pages : 416

Get Book Here

Book Description
Developed over years of classroom use, this textbook provides a clear and accessible approach to real analysis. This modern interpretation is based on the author’s lecture notes and has been meticulously tailored to motivate students and inspire readers to explore the material, and to continue exploring even after they have finished the book. The definitions, theorems, and proofs contained within are presented with mathematical rigor, but conveyed in an accessible manner and with language and motivation meant for students who have not taken a previous course on this subject. The text covers all of the topics essential for an introductory course, including Lebesgue measure, measurable functions, Lebesgue integrals, differentiation, absolute continuity, Banach and Hilbert spaces, and more. Throughout each chapter, challenging exercises are presented, and the end of each section includes additional problems. Such an inclusive approach creates an abundance of opportunities for readers to develop their understanding, and aids instructors as they plan their coursework. Additional resources are available online, including expanded chapters, enrichment exercises, a detailed course outline, and much more. Introduction to Real Analysis is intended for first-year graduate students taking a first course in real analysis, as well as for instructors seeking detailed lecture material with structure and accessibility in mind. Additionally, its content is appropriate for Ph.D. students in any scientific or engineering discipline who have taken a standard upper-level undergraduate real analysis course.

Machine Learning Meets Quantum Physics

Machine Learning Meets Quantum Physics PDF Author: Kristof T. Schütt
Publisher: Springer Nature
ISBN: 3030402452
Category : Science
Languages : en
Pages : 473

Get Book Here

Book Description
Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume. To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI for molecules and materials. The book that has emerged from a series of workshops provides a snapshot of this rapidly developing field. It contains tutorial material explaining the relevant foundations needed in chemistry, physics as well as machine learning to give an easy starting point for interested readers. In addition, a number of research papers defining the current state-of-the-art are included. The book has five parts (Fundamentals, Incorporating Prior Knowledge, Deep Learning of Atomistic Representations, Atomistic Simulations and Discovery and Design), each prefaced by editorial commentary that puts the respective parts into a broader scientific context.

Advances in Microlocal and Time-Frequency Analysis

Advances in Microlocal and Time-Frequency Analysis PDF Author: Paolo Boggiatto
Publisher: Springer Nature
ISBN: 3030361381
Category : Mathematics
Languages : en
Pages : 533

Get Book Here

Book Description
The present volume gathers contributions to the conference Microlocal and Time-Frequency Analysis 2018 (MLTFA18), which was held at Torino University from the 2nd to the 6th of July 2018. The event was organized in honor of Professor Luigi Rodino on the occasion of his 70th birthday. The conference’s focus and the contents of the papers reflect Luigi’s various research interests in the course of his long and extremely prolific career at Torino University.