Author: J. J. Koliha
Publisher: World Scientific
ISBN: 981283656X
Category : Mathematics
Languages : en
Pages : 427
Book Description
Metrics, Norms and Integrals is a textbook on contemporary analysis based on the author's lectures given at the University of Melbourne for over two decades. It covers three main topics: metric and topological spaces, functional analysis, and the theory of the Lebesgue integral on measure spaces. This self-contained text contains a number of original presentations, including an early introduction of pseudometric spaces to motivate general topologies, an innovative introduction to the Lebesgue integral, and a discussion on the use of the Newton integral. It is thus a valuable book to inform and stimulate both undergraduate and graduate students.
Metrics, Norms and Integrals
Author: J. J. Koliha
Publisher: World Scientific
ISBN: 981283656X
Category : Mathematics
Languages : en
Pages : 427
Book Description
Metrics, Norms and Integrals is a textbook on contemporary analysis based on the author's lectures given at the University of Melbourne for over two decades. It covers three main topics: metric and topological spaces, functional analysis, and the theory of the Lebesgue integral on measure spaces. This self-contained text contains a number of original presentations, including an early introduction of pseudometric spaces to motivate general topologies, an innovative introduction to the Lebesgue integral, and a discussion on the use of the Newton integral. It is thus a valuable book to inform and stimulate both undergraduate and graduate students.
Publisher: World Scientific
ISBN: 981283656X
Category : Mathematics
Languages : en
Pages : 427
Book Description
Metrics, Norms and Integrals is a textbook on contemporary analysis based on the author's lectures given at the University of Melbourne for over two decades. It covers three main topics: metric and topological spaces, functional analysis, and the theory of the Lebesgue integral on measure spaces. This self-contained text contains a number of original presentations, including an early introduction of pseudometric spaces to motivate general topologies, an innovative introduction to the Lebesgue integral, and a discussion on the use of the Newton integral. It is thus a valuable book to inform and stimulate both undergraduate and graduate students.
Metrics, Norms And Integrals: An Introduction To Contemporary Analysis
Author: Jerry J Koliha
Publisher: World Scientific Publishing Company
ISBN: 9813101180
Category : Mathematics
Languages : en
Pages : 427
Book Description
Metrics, Norms and Integrals is a textbook on contemporary analysis based on the author's lectures given at the University of Melbourne for over two decades. It covers three main topics: metric and topological spaces, functional analysis, and the theory of the Lebesgue integral on measure spaces. This self-contained text contains a number of original presentations, including an early introduction of pseudometric spaces to motivate general topologies, an innovative introduction to the Lebesgue integral, and a discussion on the use of the Newton integral. It is thus a valuable book to inform and stimulate both undergraduate and graduate students.
Publisher: World Scientific Publishing Company
ISBN: 9813101180
Category : Mathematics
Languages : en
Pages : 427
Book Description
Metrics, Norms and Integrals is a textbook on contemporary analysis based on the author's lectures given at the University of Melbourne for over two decades. It covers three main topics: metric and topological spaces, functional analysis, and the theory of the Lebesgue integral on measure spaces. This self-contained text contains a number of original presentations, including an early introduction of pseudometric spaces to motivate general topologies, an innovative introduction to the Lebesgue integral, and a discussion on the use of the Newton integral. It is thus a valuable book to inform and stimulate both undergraduate and graduate students.
Handbook of Measure Theory
Author: E. Pap
Publisher: Elsevier
ISBN: 0080533094
Category : Mathematics
Languages : en
Pages : 1633
Book Description
The main goal of this Handbook isto survey measure theory with its many different branches and itsrelations with other areas of mathematics. Mostly aggregating many classical branches of measure theory the aim of the Handbook is also to cover new fields, approaches and applications whichsupport the idea of "measure" in a wider sense, e.g. the ninth part of the Handbook. Although chapters are written of surveys in the variousareas they contain many special topics and challengingproblems valuable for experts and rich sources of inspiration.Mathematicians from other areas as well as physicists, computerscientists, engineers and econometrists will find useful results andpowerful methods for their research. The reader may find in theHandbook many close relations to other mathematical areas: realanalysis, probability theory, statistics, ergodic theory,functional analysis, potential theory, topology, set theory,geometry, differential equations, optimization, variationalanalysis, decision making and others. The Handbook is a richsource of relevant references to articles, books and lecturenotes and it contains for the reader's convenience an extensivesubject and author index.
Publisher: Elsevier
ISBN: 0080533094
Category : Mathematics
Languages : en
Pages : 1633
Book Description
The main goal of this Handbook isto survey measure theory with its many different branches and itsrelations with other areas of mathematics. Mostly aggregating many classical branches of measure theory the aim of the Handbook is also to cover new fields, approaches and applications whichsupport the idea of "measure" in a wider sense, e.g. the ninth part of the Handbook. Although chapters are written of surveys in the variousareas they contain many special topics and challengingproblems valuable for experts and rich sources of inspiration.Mathematicians from other areas as well as physicists, computerscientists, engineers and econometrists will find useful results andpowerful methods for their research. The reader may find in theHandbook many close relations to other mathematical areas: realanalysis, probability theory, statistics, ergodic theory,functional analysis, potential theory, topology, set theory,geometry, differential equations, optimization, variationalanalysis, decision making and others. The Handbook is a richsource of relevant references to articles, books and lecturenotes and it contains for the reader's convenience an extensivesubject and author index.
Measure, Integration & Real Analysis
Author: Sheldon Axler
Publisher: Springer Nature
ISBN: 3030331431
Category : Mathematics
Languages : en
Pages : 430
Book Description
This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/
Publisher: Springer Nature
ISBN: 3030331431
Category : Mathematics
Languages : en
Pages : 430
Book Description
This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/
Metrics, Norms, Inner Products, and Operator Theory
Author: Christopher Heil
Publisher: Birkhäuser
ISBN: 3319653229
Category : Mathematics
Languages : en
Pages : 374
Book Description
This text is a self-contained introduction to the three main families that we encounter in analysis – metric spaces, normed spaces, and inner product spaces – and to the operators that transform objects in one into objects in another. With an emphasis on the fundamental properties defining the spaces, this book guides readers to a deeper understanding of analysis and an appreciation of the field as the “science of functions.” Many important topics that are rarely presented in an accessible way to undergraduate students are included, such as unconditional convergence of series, Schauder bases for Banach spaces, the dual of lp topological isomorphisms, the Spectral Theorem, the Baire Category Theorem, and the Uniform Boundedness Principle. The text is constructed in such a way that instructors have the option whether to include more advanced topics. Written in an appealing and accessible style, Metrics, Norms, Inner Products, and Operator Theory is suitable for independent study or as the basis for an undergraduate-level course. Instructors have several options for building a course around the text depending on the level and interests of their students. Key features: Aimed at students who have a basic knowledge of undergraduate real analysis. All of the required background material is reviewed in the first chapter. Suitable for undergraduate-level courses; no familiarity with measure theory is required. Extensive exercises complement the text and provide opportunities for learning by doing. A separate solutions manual is available for instructors via the Birkhäuser website (www.springer.com/978-3-319-65321-1). Unique text providing an undergraduate-level introduction to metrics, norms, inner products, and their associated operator theory.
Publisher: Birkhäuser
ISBN: 3319653229
Category : Mathematics
Languages : en
Pages : 374
Book Description
This text is a self-contained introduction to the three main families that we encounter in analysis – metric spaces, normed spaces, and inner product spaces – and to the operators that transform objects in one into objects in another. With an emphasis on the fundamental properties defining the spaces, this book guides readers to a deeper understanding of analysis and an appreciation of the field as the “science of functions.” Many important topics that are rarely presented in an accessible way to undergraduate students are included, such as unconditional convergence of series, Schauder bases for Banach spaces, the dual of lp topological isomorphisms, the Spectral Theorem, the Baire Category Theorem, and the Uniform Boundedness Principle. The text is constructed in such a way that instructors have the option whether to include more advanced topics. Written in an appealing and accessible style, Metrics, Norms, Inner Products, and Operator Theory is suitable for independent study or as the basis for an undergraduate-level course. Instructors have several options for building a course around the text depending on the level and interests of their students. Key features: Aimed at students who have a basic knowledge of undergraduate real analysis. All of the required background material is reviewed in the first chapter. Suitable for undergraduate-level courses; no familiarity with measure theory is required. Extensive exercises complement the text and provide opportunities for learning by doing. A separate solutions manual is available for instructors via the Birkhäuser website (www.springer.com/978-3-319-65321-1). Unique text providing an undergraduate-level introduction to metrics, norms, inner products, and their associated operator theory.
An Introduction to Measure Theory
Author: Terence Tao
Publisher: American Mathematical Soc.
ISBN: 1470466406
Category : Education
Languages : en
Pages : 206
Book Description
This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.
Publisher: American Mathematical Soc.
ISBN: 1470466406
Category : Education
Languages : en
Pages : 206
Book Description
This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.
Morrey Spaces
Author: Yoshihiro Sawano
Publisher: CRC Press
ISBN: 1498765521
Category : Mathematics
Languages : en
Pages : 503
Book Description
Morrey spaces were introduced by Charles Morrey to investigate the local behaviour of solutions to second order elliptic partial differential equations. The technique is very useful in many areas in mathematics, in particular in harmonic analysis, potential theory, partial differential equations and mathematical physics. Across two volumes, the authors of Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s discuss the current state of art and perspectives of developments of this theory of Morrey spaces, with the emphasis in Volume I focused mainly on harmonic analysis. Features Provides a ‘from-scratch’ overview of the topic readable by anyone with an understanding of integration theory Suitable for graduate students, masters course students, and researchers in PDE's or Geometry Replete with exercises and examples to aid the reader’s understanding
Publisher: CRC Press
ISBN: 1498765521
Category : Mathematics
Languages : en
Pages : 503
Book Description
Morrey spaces were introduced by Charles Morrey to investigate the local behaviour of solutions to second order elliptic partial differential equations. The technique is very useful in many areas in mathematics, in particular in harmonic analysis, potential theory, partial differential equations and mathematical physics. Across two volumes, the authors of Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s discuss the current state of art and perspectives of developments of this theory of Morrey spaces, with the emphasis in Volume I focused mainly on harmonic analysis. Features Provides a ‘from-scratch’ overview of the topic readable by anyone with an understanding of integration theory Suitable for graduate students, masters course students, and researchers in PDE's or Geometry Replete with exercises and examples to aid the reader’s understanding
General Theory of Functions and Integration
Author: Angus Ellis Taylor
Publisher: Courier Corporation
ISBN: 0486649881
Category : Mathematics
Languages : en
Pages : 451
Book Description
Uniting a variety of approaches to the study of integration, a well-known professor presents a single-volume "blend of the particular and the general, of the concrete and the abstract." 1966 edition.
Publisher: Courier Corporation
ISBN: 0486649881
Category : Mathematics
Languages : en
Pages : 451
Book Description
Uniting a variety of approaches to the study of integration, a well-known professor presents a single-volume "blend of the particular and the general, of the concrete and the abstract." 1966 edition.
Sobolev Spaces on Metric Measure Spaces
Author: Juha Heinonen
Publisher: Cambridge University Press
ISBN: 1107092345
Category : Mathematics
Languages : en
Pages : 447
Book Description
This coherent treatment from first principles is an ideal introduction for graduate students and a useful reference for experts.
Publisher: Cambridge University Press
ISBN: 1107092345
Category : Mathematics
Languages : en
Pages : 447
Book Description
This coherent treatment from first principles is an ideal introduction for graduate students and a useful reference for experts.
Adapted Wavelet Analysis
Author: Mladen Victor Wickerhauser
Publisher: CRC Press
ISBN: 143986361X
Category : Mathematics
Languages : en
Pages : 499
Book Description
This detail-oriented text is intended for engineers and applied mathematicians who must write computer programs to perform wavelet and related analysis on real data. It contains an overview of mathematical prerequisites and proceeds to describe hands-on programming techniques to implement special programs for signal analysis and other applications.
Publisher: CRC Press
ISBN: 143986361X
Category : Mathematics
Languages : en
Pages : 499
Book Description
This detail-oriented text is intended for engineers and applied mathematicians who must write computer programs to perform wavelet and related analysis on real data. It contains an overview of mathematical prerequisites and proceeds to describe hands-on programming techniques to implement special programs for signal analysis and other applications.