Author: Ellina Grigorieva
Publisher: Springer Science & Business Media
ISBN: 331900705X
Category : Mathematics
Languages : en
Pages : 247
Book Description
This book is a unique collection of challenging geometry problems and detailed solutions that will build students’ confidence in mathematics. By proposing several methods to approach each problem and emphasizing geometry’s connections with different fields of mathematics, Methods of Solving Complex Geometry Problems serves as a bridge to more advanced problem solving. Written by an accomplished female mathematician who struggled with geometry as a child, it does not intimidate, but instead fosters the reader’s ability to solve math problems through the direct application of theorems. Containing over 160 complex problems with hints and detailed solutions, Methods of Solving Complex Geometry Problems can be used as a self-study guide for mathematics competitions and for improving problem-solving skills in courses on plane geometry or the history of mathematics. It contains important and sometimes overlooked topics on triangles, quadrilaterals, and circles such as the Menelaus-Ceva theorem, Simson’s line, Heron’s formula, and the theorems of the three altitudes and medians. It can also be used by professors as a resource to stimulate the abstract thinking required to transcend the tedious and routine, bringing forth the original thought of which their students are capable. Methods of Solving Complex Geometry Problems will interest high school and college students needing to prepare for exams and competitions, as well as anyone who enjoys an intellectual challenge and has a special love of geometry. It will also appeal to instructors of geometry, history of mathematics, and math education courses.
Methods of Solving Complex Geometry Problems
Author: Ellina Grigorieva
Publisher: Springer Science & Business Media
ISBN: 331900705X
Category : Mathematics
Languages : en
Pages : 247
Book Description
This book is a unique collection of challenging geometry problems and detailed solutions that will build students’ confidence in mathematics. By proposing several methods to approach each problem and emphasizing geometry’s connections with different fields of mathematics, Methods of Solving Complex Geometry Problems serves as a bridge to more advanced problem solving. Written by an accomplished female mathematician who struggled with geometry as a child, it does not intimidate, but instead fosters the reader’s ability to solve math problems through the direct application of theorems. Containing over 160 complex problems with hints and detailed solutions, Methods of Solving Complex Geometry Problems can be used as a self-study guide for mathematics competitions and for improving problem-solving skills in courses on plane geometry or the history of mathematics. It contains important and sometimes overlooked topics on triangles, quadrilaterals, and circles such as the Menelaus-Ceva theorem, Simson’s line, Heron’s formula, and the theorems of the three altitudes and medians. It can also be used by professors as a resource to stimulate the abstract thinking required to transcend the tedious and routine, bringing forth the original thought of which their students are capable. Methods of Solving Complex Geometry Problems will interest high school and college students needing to prepare for exams and competitions, as well as anyone who enjoys an intellectual challenge and has a special love of geometry. It will also appeal to instructors of geometry, history of mathematics, and math education courses.
Publisher: Springer Science & Business Media
ISBN: 331900705X
Category : Mathematics
Languages : en
Pages : 247
Book Description
This book is a unique collection of challenging geometry problems and detailed solutions that will build students’ confidence in mathematics. By proposing several methods to approach each problem and emphasizing geometry’s connections with different fields of mathematics, Methods of Solving Complex Geometry Problems serves as a bridge to more advanced problem solving. Written by an accomplished female mathematician who struggled with geometry as a child, it does not intimidate, but instead fosters the reader’s ability to solve math problems through the direct application of theorems. Containing over 160 complex problems with hints and detailed solutions, Methods of Solving Complex Geometry Problems can be used as a self-study guide for mathematics competitions and for improving problem-solving skills in courses on plane geometry or the history of mathematics. It contains important and sometimes overlooked topics on triangles, quadrilaterals, and circles such as the Menelaus-Ceva theorem, Simson’s line, Heron’s formula, and the theorems of the three altitudes and medians. It can also be used by professors as a resource to stimulate the abstract thinking required to transcend the tedious and routine, bringing forth the original thought of which their students are capable. Methods of Solving Complex Geometry Problems will interest high school and college students needing to prepare for exams and competitions, as well as anyone who enjoys an intellectual challenge and has a special love of geometry. It will also appeal to instructors of geometry, history of mathematics, and math education courses.
Euclidean Geometry in Mathematical Olympiads
Author: Evan Chen
Publisher: American Mathematical Soc.
ISBN: 1470466201
Category : Education
Languages : en
Pages : 311
Book Description
This is a challenging problem-solving book in Euclidean geometry, assuming nothing of the reader other than a good deal of courage. Topics covered included cyclic quadrilaterals, power of a point, homothety, triangle centers; along the way the reader will meet such classical gems as the nine-point circle, the Simson line, the symmedian and the mixtilinear incircle, as well as the theorems of Euler, Ceva, Menelaus, and Pascal. Another part is dedicated to the use of complex numbers and barycentric coordinates, granting the reader both a traditional and computational viewpoint of the material. The final part consists of some more advanced topics, such as inversion in the plane, the cross ratio and projective transformations, and the theory of the complete quadrilateral. The exposition is friendly and relaxed, and accompanied by over 300 beautifully drawn figures. The emphasis of this book is placed squarely on the problems. Each chapter contains carefully chosen worked examples, which explain not only the solutions to the problems but also describe in close detail how one would invent the solution to begin with. The text contains a selection of 300 practice problems of varying difficulty from contests around the world, with extensive hints and selected solutions. This book is especially suitable for students preparing for national or international mathematical olympiads or for teachers looking for a text for an honor class.
Publisher: American Mathematical Soc.
ISBN: 1470466201
Category : Education
Languages : en
Pages : 311
Book Description
This is a challenging problem-solving book in Euclidean geometry, assuming nothing of the reader other than a good deal of courage. Topics covered included cyclic quadrilaterals, power of a point, homothety, triangle centers; along the way the reader will meet such classical gems as the nine-point circle, the Simson line, the symmedian and the mixtilinear incircle, as well as the theorems of Euler, Ceva, Menelaus, and Pascal. Another part is dedicated to the use of complex numbers and barycentric coordinates, granting the reader both a traditional and computational viewpoint of the material. The final part consists of some more advanced topics, such as inversion in the plane, the cross ratio and projective transformations, and the theory of the complete quadrilateral. The exposition is friendly and relaxed, and accompanied by over 300 beautifully drawn figures. The emphasis of this book is placed squarely on the problems. Each chapter contains carefully chosen worked examples, which explain not only the solutions to the problems but also describe in close detail how one would invent the solution to begin with. The text contains a selection of 300 practice problems of varying difficulty from contests around the world, with extensive hints and selected solutions. This book is especially suitable for students preparing for national or international mathematical olympiads or for teachers looking for a text for an honor class.
Challenging Problems in Geometry
Author: Alfred S. Posamentier
Publisher: Courier Corporation
ISBN: 0486134865
Category : Mathematics
Languages : en
Pages : 275
Book Description
Collection of nearly 200 unusual problems dealing with congruence and parallelism, the Pythagorean theorem, circles, area relationships, Ptolemy and the cyclic quadrilateral, collinearity and concurrency and more. Arranged in order of difficulty. Detailed solutions.
Publisher: Courier Corporation
ISBN: 0486134865
Category : Mathematics
Languages : en
Pages : 275
Book Description
Collection of nearly 200 unusual problems dealing with congruence and parallelism, the Pythagorean theorem, circles, area relationships, Ptolemy and the cyclic quadrilateral, collinearity and concurrency and more. Arranged in order of difficulty. Detailed solutions.
Methods of Solving Nonstandard Problems
Author: Ellina Grigorieva
Publisher: Birkhäuser
ISBN: 3319198874
Category : Mathematics
Languages : en
Pages : 349
Book Description
This book, written by an accomplished female mathematician, is the second to explore nonstandard mathematical problems – those that are not directly solved by standard mathematical methods but instead rely on insight and the synthesis of a variety of mathematical ideas. It promotes mental activity as well as greater mathematical skills, and is an ideal resource for successful preparation for the mathematics Olympiad. Numerous strategies and techniques are presented that can be used to solve intriguing and challenging problems of the type often found in competitions. The author uses a friendly, non-intimidating approach to emphasize connections between different fields of mathematics and often proposes several different ways to attack the same problem. Topics covered include functions and their properties, polynomials, trigonometric and transcendental equations and inequalities, optimization, differential equations, nonlinear systems, and word problems. Over 360 problems are included with hints, answers, and detailed solutions. Methods of Solving Nonstandard Problems will interest high school and college students, whether they are preparing for a math competition or looking to improve their mathematical skills, as well as anyone who enjoys an intellectual challenge and has a special love for mathematics. Teachers and college professors will be able to use it as an extra resource in the classroom to augment a conventional course of instruction in order to stimulate abstract thinking and inspire original thought.
Publisher: Birkhäuser
ISBN: 3319198874
Category : Mathematics
Languages : en
Pages : 349
Book Description
This book, written by an accomplished female mathematician, is the second to explore nonstandard mathematical problems – those that are not directly solved by standard mathematical methods but instead rely on insight and the synthesis of a variety of mathematical ideas. It promotes mental activity as well as greater mathematical skills, and is an ideal resource for successful preparation for the mathematics Olympiad. Numerous strategies and techniques are presented that can be used to solve intriguing and challenging problems of the type often found in competitions. The author uses a friendly, non-intimidating approach to emphasize connections between different fields of mathematics and often proposes several different ways to attack the same problem. Topics covered include functions and their properties, polynomials, trigonometric and transcendental equations and inequalities, optimization, differential equations, nonlinear systems, and word problems. Over 360 problems are included with hints, answers, and detailed solutions. Methods of Solving Nonstandard Problems will interest high school and college students, whether they are preparing for a math competition or looking to improve their mathematical skills, as well as anyone who enjoys an intellectual challenge and has a special love for mathematics. Teachers and college professors will be able to use it as an extra resource in the classroom to augment a conventional course of instruction in order to stimulate abstract thinking and inspire original thought.
Famous Problems of Geometry and How to Solve Them
Author: Benjamin Bold
Publisher: Courier Corporation
ISBN: 0486137635
Category : Science
Languages : en
Pages : 148
Book Description
Delve into the development of modern mathematics and match wits with Euclid, Newton, Descartes, and others. Each chapter explores an individual type of challenge, with commentary and practice problems. Solutions.
Publisher: Courier Corporation
ISBN: 0486137635
Category : Science
Languages : en
Pages : 148
Book Description
Delve into the development of modern mathematics and match wits with Euclid, Newton, Descartes, and others. Each chapter explores an individual type of challenge, with commentary and practice problems. Solutions.
Solving Problems in Geometry
Author: Kim Hoo Hang
Publisher: World Scientific Publishing Company
ISBN: 9789814583749
Category : Mathematics
Languages : en
Pages : 250
Book Description
This new volume of the Mathematical Olympiad Series focuses on the topic of geometry. Basic and advanced theorems commonly seen in Mathematical Olympiad are introduced and illustrated with plenty of examples. Special techniques in solving various types of geometrical problems are also introduced, while the authors elaborate extensively on how to acquire an insight and develop strategies in tackling difficult geometrical problems. This book is suitable for any reader with elementary geometrical knowledge at the lower secondary level. Each chapter includes sufficient scaffolding and is comprehensive enough for the purpose of self-study. Readers who complete the chapters on the basic theorems and techniques would acquire a good foundation in geometry and may attempt to solve many geometrical problems in various mathematical competitions. Meanwhile, experienced contestants in Mathematical Olympiad competitions will find a large collection of problems pitched at competitions at the international level, with opportunities to practise and sharpen their problem-solving skills in geometry.
Publisher: World Scientific Publishing Company
ISBN: 9789814583749
Category : Mathematics
Languages : en
Pages : 250
Book Description
This new volume of the Mathematical Olympiad Series focuses on the topic of geometry. Basic and advanced theorems commonly seen in Mathematical Olympiad are introduced and illustrated with plenty of examples. Special techniques in solving various types of geometrical problems are also introduced, while the authors elaborate extensively on how to acquire an insight and develop strategies in tackling difficult geometrical problems. This book is suitable for any reader with elementary geometrical knowledge at the lower secondary level. Each chapter includes sufficient scaffolding and is comprehensive enough for the purpose of self-study. Readers who complete the chapters on the basic theorems and techniques would acquire a good foundation in geometry and may attempt to solve many geometrical problems in various mathematical competitions. Meanwhile, experienced contestants in Mathematical Olympiad competitions will find a large collection of problems pitched at competitions at the international level, with opportunities to practise and sharpen their problem-solving skills in geometry.
Methods of Solving Sequence and Series Problems
Author: Ellina Grigorieva
Publisher: Birkhäuser
ISBN: 3319456865
Category : Mathematics
Languages : en
Pages : 294
Book Description
This book aims to dispel the mystery and fear experienced by students surrounding sequences, series, convergence, and their applications. The author, an accomplished female mathematician, achieves this by taking a problem solving approach, starting with fascinating problems and solving them step by step with clear explanations and illuminating diagrams. The reader will find the problems interesting, unusual, and fun, yet solved with the rigor expected in a competition. Some problems are taken directly from mathematics competitions, with the name and year of the exam provided for reference. Proof techniques are emphasized, with a variety of methods presented. The text aims to expand the mind of the reader by often presenting multiple ways to attack the same problem, as well as drawing connections with different fields of mathematics. Intuitive and visual arguments are presented alongside technical proofs to provide a well-rounded methodology. With nearly 300 problems including hints, answers, and solutions, Methods of Solving Sequences and Series Problems is an ideal resource for those learning calculus, preparing for mathematics competitions, or just looking for a worthwhile challenge. It can also be used by faculty who are looking for interesting and insightful problems that are not commonly found in other textbooks.
Publisher: Birkhäuser
ISBN: 3319456865
Category : Mathematics
Languages : en
Pages : 294
Book Description
This book aims to dispel the mystery and fear experienced by students surrounding sequences, series, convergence, and their applications. The author, an accomplished female mathematician, achieves this by taking a problem solving approach, starting with fascinating problems and solving them step by step with clear explanations and illuminating diagrams. The reader will find the problems interesting, unusual, and fun, yet solved with the rigor expected in a competition. Some problems are taken directly from mathematics competitions, with the name and year of the exam provided for reference. Proof techniques are emphasized, with a variety of methods presented. The text aims to expand the mind of the reader by often presenting multiple ways to attack the same problem, as well as drawing connections with different fields of mathematics. Intuitive and visual arguments are presented alongside technical proofs to provide a well-rounded methodology. With nearly 300 problems including hints, answers, and solutions, Methods of Solving Sequences and Series Problems is an ideal resource for those learning calculus, preparing for mathematics competitions, or just looking for a worthwhile challenge. It can also be used by faculty who are looking for interesting and insightful problems that are not commonly found in other textbooks.
Problem-Solving Strategies
Author: Arthur Engel
Publisher: Springer Science & Business Media
ISBN: 0387226419
Category : Mathematics
Languages : en
Pages : 404
Book Description
A unique collection of competition problems from over twenty major national and international mathematical competitions for high school students. Written for trainers and participants of contests of all levels up to the highest level, this will appeal to high school teachers conducting a mathematics club who need a range of simple to complex problems and to those instructors wishing to pose a "problem of the week", thus bringing a creative atmosphere into the classrooms. Equally, this is a must-have for individuals interested in solving difficult and challenging problems. Each chapter starts with typical examples illustrating the central concepts and is followed by a number of carefully selected problems and their solutions. Most of the solutions are complete, but some merely point to the road leading to the final solution. In addition to being a valuable resource of mathematical problems and solution strategies, this is the most complete training book on the market.
Publisher: Springer Science & Business Media
ISBN: 0387226419
Category : Mathematics
Languages : en
Pages : 404
Book Description
A unique collection of competition problems from over twenty major national and international mathematical competitions for high school students. Written for trainers and participants of contests of all levels up to the highest level, this will appeal to high school teachers conducting a mathematics club who need a range of simple to complex problems and to those instructors wishing to pose a "problem of the week", thus bringing a creative atmosphere into the classrooms. Equally, this is a must-have for individuals interested in solving difficult and challenging problems. Each chapter starts with typical examples illustrating the central concepts and is followed by a number of carefully selected problems and their solutions. Most of the solutions are complete, but some merely point to the road leading to the final solution. In addition to being a valuable resource of mathematical problems and solution strategies, this is the most complete training book on the market.
Geometry of Complex Numbers
Author: Hans Schwerdtfeger
Publisher: Courier Corporation
ISBN: 0486135861
Category : Mathematics
Languages : en
Pages : 228
Book Description
Illuminating, widely praised book on analytic geometry of circles, the Moebius transformation, and 2-dimensional non-Euclidean geometries.
Publisher: Courier Corporation
ISBN: 0486135861
Category : Mathematics
Languages : en
Pages : 228
Book Description
Illuminating, widely praised book on analytic geometry of circles, the Moebius transformation, and 2-dimensional non-Euclidean geometries.
Complex Numbers and Geometry
Author: Liang-shin Hahn
Publisher: American Mathematical Soc.
ISBN: 1470451824
Category : Education
Languages : en
Pages : 204
Book Description
The purpose of this book is to demonstrate that complex numbers and geometry can be blended together beautifully. This results in easy proofs and natural generalizations of many theorems in plane geometry, such as the Napoleon theorem, the Ptolemy-Euler theorem, the Simson theorem, and the Morley theorem. The book is self-contained—no background in complex numbers is assumed—and can be covered at a leisurely pace in a one-semester course. Many of the chapters can be read independently. Over 100 exercises are included. The book would be suitable as a text for a geometry course, or for a problem solving seminar, or as enrichment for the student who wants to know more.
Publisher: American Mathematical Soc.
ISBN: 1470451824
Category : Education
Languages : en
Pages : 204
Book Description
The purpose of this book is to demonstrate that complex numbers and geometry can be blended together beautifully. This results in easy proofs and natural generalizations of many theorems in plane geometry, such as the Napoleon theorem, the Ptolemy-Euler theorem, the Simson theorem, and the Morley theorem. The book is self-contained—no background in complex numbers is assumed—and can be covered at a leisurely pace in a one-semester course. Many of the chapters can be read independently. Over 100 exercises are included. The book would be suitable as a text for a geometry course, or for a problem solving seminar, or as enrichment for the student who wants to know more.