Metal Fatigue Damage

Metal Fatigue Damage PDF Author: S. S. Manson
Publisher: ASTM International
ISBN: 9780803107229
Category : Airplanes
Languages : en
Pages : 356

Get Book

Book Description

Metal Fatigue Damage

Metal Fatigue Damage PDF Author: S. S. Manson
Publisher: ASTM International
ISBN: 9780803107229
Category : Airplanes
Languages : en
Pages : 356

Get Book

Book Description


Metal Fatigue

Metal Fatigue PDF Author: Angel F. Madayag
Publisher: John Wiley & Sons
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 448

Get Book

Book Description


Metal Fatigue in Engineering

Metal Fatigue in Engineering PDF Author: Henry O. Fuchs
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 354

Get Book

Book Description
Applied Optimal Design Mechanical and Structural Systems Edward J. Haug & Jasbir S. Arora This computer-aided design text presents and illustrates techniques for optimizing the design of a wide variety of mechanical and structural systems through the use of nonlinear programming and optimal control theory. A state space method is adopted that incorporates the system model as an integral part of the design formulations. Step-by-step numerical algorithms are given for each method of optimal design. Basic properties of the equations of mechanics are used to carry out design sensitivity analysis and optimization, with numerical efficiency and generality that is in most cases an order of magnitude faster in digital computation than applications using standard nonlinear programming methods. 1979 Optimum Design of Mechanical Elements, 2nd Ed. Ray C. Johnson The two basic optimization techniques, the method of optimal design (MOD) and automated optimal design (AOD), discussed in this valuable work can be applied to the optimal design of mechanical elements commonly found in machinery, mechanisms, mechanical assemblages, products, and structures. The many illustrative examples used to explicate these techniques include such topics as tensile bars, torsion bars, shafts in combined loading, helical and spur gears, helical springs, and hydrostatic journal bearings. The author covers curve fitting, equation simplification, material properties, and failure theories, as well as the effects of manufacturing errors on product performance and the need for a factor of safety in design work. 1980 Globally Optimal Design Douglass J. Wilde Here are new analytic optimization procedures effective where numerical methods either take too long or do not provide correct answers. This book uses mathematics sparingly, proving only results generated by examples. It defines simple design methods guaranteed to give the global, rather than any local, optimum through computations easy enough to be done on a manual calculator. The author confronts realistic situations: determining critical constraints; dealing with negative contributions; handling power function; tackling logarithmic and exponential nonlinearities; coping with standard sizes and indivisible components; and resolving conflicting objectives and logical restrictions. Special mathematical structures are exposed and used to solve design problems. 1978

Metal Fatigue Analysis Handbook

Metal Fatigue Analysis Handbook PDF Author: Yung-Li Lee
Publisher: Elsevier
ISBN: 0123852048
Category : Technology & Engineering
Languages : en
Pages : 634

Get Book

Book Description
Understand why fatigue happens and how to model, simulate, design and test for it with this practical, industry-focused reference Written to bridge the technology gap between academia and industry, the Metal Fatigue Analysis Handbook presents state-of-the-art fatigue theories and technologies alongside more commonly used practices, with working examples included to provide an informative, practical, complete toolkit of fatigue analysis. Prepared by an expert team with extensive industrial, research and professorial experience, the book will help you to understand: Critical factors that cause and affect fatigue in the materials and structures relating to your work Load and stress analysis in addition to fatigue damage-the latter being the sole focus of many books on the topic How to design with fatigue in mind to meet durability requirements How to model, simulate and test with different materials in different fatigue scenarios The importance and limitations of different models for cost effective and efficient testing Whilst the book focuses on theories commonly used in the automotive industry, it is also an ideal resource for engineers and analysts in other disciplines such as aerospace engineering, civil engineering, offshore engineering, and industrial engineering. The only book on the market to address state-of-the-art technologies in load, stress and fatigue damage analyses and their application to engineering design for durability Intended to bridge the technology gap between academia and industry - written by an expert team with extensive industrial, research and professorial experience in fatigue analysis and testing An advanced mechanical engineering design handbook focused on the needs of professional engineers within automotive, aerospace and related industrial disciplines

Ultra-low-Cycle Fatigue Failure of Metal Structures under Strong Earthquakes

Ultra-low-Cycle Fatigue Failure of Metal Structures under Strong Earthquakes PDF Author: Liang-Jiu Jia
Publisher: Springer
ISBN: 9811326614
Category : Science
Languages : en
Pages : 221

Get Book

Book Description
This book presents experimental results and theoretical advances in the field of ultra-low-cycle fatigue failure of metal structures under strong earthquakes, where the dominant failure mechanism is ductile fracture. Studies on ultra-low-cycle fatigue failure of metal materials and structures have caught the interest of engineers and researchers from various disciplines, such as material, civil and mechanical engineering. Pursuing a holistic approach, the book establishes a fundamental framework for this topic, while also highlighting the importance of theoretical analysis and experimental results in the fracture evaluation of metal structures under seismic loading. Accordingly, it offers a valuable resource for undergraduate and graduate students interested in ultra-low-cycle fatigue, researchers investigating steel and aluminum structures, and structural engineers working on applications related to cyclic large plastic loading conditions.

Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions

Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions PDF Author: Yukitaka Murakami
Publisher: Elsevier
ISBN: 9780080496566
Category : Technology & Engineering
Languages : en
Pages : 384

Get Book

Book Description
Metal fatigue is an essential consideration for engineers and researchers who are looking at factors that cause metals to fail through stress, corrosion, etc. This is an English translation of a book originally published in Japan in 1993, with an additional two chapters on the fatigue failure of steels and the effect of surface roughness on fatigue strength. The methodology is based on important and reliable results and may be usefully applied to other fatigue problems not directly treated in this book.

Metal Fatigue Damage - Mechanism, Dectection, Avoidance, and Repair with Special Reference to Gas Turbine Components

Metal Fatigue Damage - Mechanism, Dectection, Avoidance, and Repair with Special Reference to Gas Turbine Components PDF Author: Manson SS.
Publisher: ASTM International
ISBN:
Category :
Languages : en
Pages : 354

Get Book

Book Description


Metal Fatigue

Metal Fatigue PDF Author: Thomas James Dolan
Publisher:
ISBN:
Category : Metals
Languages : en
Pages : 436

Get Book

Book Description


Metal Fatigue Damage

Metal Fatigue Damage PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book

Book Description


Fatigue of Materials

Fatigue of Materials PDF Author: Subra Suresh
Publisher: Cambridge University Press
ISBN: 9780521578479
Category : Technology & Engineering
Languages : en
Pages : 708

Get Book

Book Description
Written by a leading researcher in the field, this revised and updated second edition of a highly successful book provides an authoritative, comprehensive and unified treatment of the mechanics and micromechanisms of fatigue in metals, non-metals and composites. The author discusses the principles of cyclic deformation, crack initiation and crack growth by fatigue, covering both microscopic and continuum aspects. The book begins with discussions of cyclic deformation and fatigue crack initiation in monocrystalline and polycrystalline ductile alloys as well as in brittle and semi-/non-crystalline solids. Total life and damage-tolerant approaches are then introduced in metals, non-metals and composites followed by more advanced topics. The book includes an extensive bibliography and a problem set for each chapter, together with worked-out example problems and case studies. This will be an important reference for anyone studying fracture and fatigue in materials science and engineering, mechanical, civil, nuclear and aerospace engineering, and biomechanics.