Membranes for Electrochemical Applications

Membranes for Electrochemical Applications PDF Author: J. Weidner
Publisher: The Electrochemical Society
ISBN: 1566776317
Category : Science
Languages : en
Pages : 69

Get Book Here

Book Description
The papers included in this issue of ECS Transactions were originally presented in the symposium ¿Membranes for Electrochemical Applications¿, held during the 211th meeting of The Electrochemical Society, in Chicago, IL, from May 6 to 11, 2007.

Membranes for Electrochemical Applications

Membranes for Electrochemical Applications PDF Author: J. Weidner
Publisher: The Electrochemical Society
ISBN: 1566776317
Category : Science
Languages : en
Pages : 69

Get Book Here

Book Description
The papers included in this issue of ECS Transactions were originally presented in the symposium ¿Membranes for Electrochemical Applications¿, held during the 211th meeting of The Electrochemical Society, in Chicago, IL, from May 6 to 11, 2007.

Electrochemical Polymer Electrolyte Membranes

Electrochemical Polymer Electrolyte Membranes PDF Author: Jianhua Fang
Publisher: CRC Press
ISBN: 1466581476
Category : Science
Languages : en
Pages : 639

Get Book Here

Book Description
Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Disc

Design of New Anion Exchange Membranes for Electrochemical Applications

Design of New Anion Exchange Membranes for Electrochemical Applications PDF Author: Liang Zhu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Anion exchange membranes (AEMs) are polymer-based electrolyte solids that conduct anions (OH-, HCO3-, Cl-, et al.), with positively charged groups bound covalently to the polymer backbones. There has been a strong and growing worldwide interest in the use of anion exchange membranes for electrochemical energy conversion and storage systems. Anion exchange membrane fuel cells (AEMFCs) have been regarded as promising energy conversion devices for stationary and mobile applications due to their potential low cost. To realize high-performance AEMFCs, new polymeric membranes are needed that are highly conductive and chemically stable. Herein, cross-linked, multication side chain, and fluorene side chain AEMs based on poly(2,6-dimethyl-1,4-phenylene oxide)s (PPO) were synthesized. PPO was chosen as an AEM substrate because of its ease of functionalization at large scale and relatively good stability and membrane properties. To produce anion conductive and durable polymer electrolytes for alkaline fuel cell applications, a series of cross-linked quaternary ammonium functionalized poly(2,6-dimethyl-1,4-phenylene oxide)s with mass-based ion exchange capacities (IEC) ranging from 1.80 to 2.55 mmol/g were synthesized via thiol-ene click chemistry. From small angle X-ray scattering (SAXS), it was found that the cross-linked membranes developed micro-phase separation between the polar PPO backbone and the hydrophobic alkyl side chains. The ion conductivity, dimensional stability, and alkaline durability of the cross-linked membranes were evaluated. The hydroxide ion conductivity of the cross-linked samples reached 60 mS/cm in liquid water at room temperature. The chemical stabilities of the membranes were evaluated under severe, accelerated aging conditions and degradation was quantified by measuring ion conductivity changes during aging. The cross-linked membranes retained their relatively high ion conductivity and good mechanical properties both in 1 M and 4 M NaOH at 80 °C after 500 h. Attenuated total reflection (ATR) spectra were used to study the degradation pathways of the membranes, and it was discovered that [beta]-hydrogen (Hofmann) elimination was likely to be the major pathway for degradation in these membranes. Side-chain containing AEMs with one, two or three cations per side chain were designed and synthesized, enabling a study of how the degree of polymer backbone functionalization and arrangement of cations on the side chain impact AEM properties. A systematic study of anion exchange membranes (AEMs) with multiple cations per side chain site was conducted to demonstrate how this motif can boost both the conductivity and stability of poly(2,6-dimethyl-1,4-phenylene oxide)-based AEMs. The highest conductivity, up to 99 mS/cm at room temperature, was observed for a triple-cation side chain AEM with 5 or 6 methylene groups between cations. This conductivity was considerably higher than AEM samples based on benzyltrimethyl ammonium or benzyldimethylhexyl ammonium groups with only one cation per side chain site. In addition to high conductivity, the multication side chain AEMs showed good alkaline and dimensional stabilities. High retention of ion exchange capacity (IEC) (93% retention) and ionic conductivity (90% retention) were observed for the triple-cation side chain AEMs during degradation testing in 1 M NaOH at 80 °C for 500 h. Based on the high-performance triple-cation side chain AEM, a Pt-catalyzed fuel cell with a peak power density of 364 mW/cm2 was achieved at 60 °C under 100% related humidity. Anion-conductive copolymers, poly(2,6-dimethyl-1,4-phenylene oxide)s containing fluorene side chains with pendant alkyltrimethylammonium groups, were synthesized via Suzuki-Miyaura coupling of aryl bromides with fluorene-boronic acids. The quaternized copolymers produced ductile, transparent membranes which were soluble in dimethyl formamide, dimethyl sulfoxide and methanol at room temperature. The fluorene side chain-containing membranes showed considerably higher hydroxide ion conductivities, up to 176 mS/cm at 80 °C, compared to that of typical anion exchange membranes based on the benzyltrimethyl ammonium moiety. The results of titration and hydroxide ion conductivity measurements demonstrated excellent chemical stability of the fluorene side chain-containing anion exchange membranes (AEMs), even after 1000 h immersion in 1 M NaOH at 80 °C. The results of this study suggest a scalable route for the preparation of AEMs for practical alkaline fuel cell applications. A unique approach was employed to toughen AEMs by crosslinking the AEMs using commercial Jeffamine additives. Compared to the BTMA40 membrane, the 10% Jeffamine cross-linked membrane demonstrated significantly higher elongation at break. To be specific, the hydrated BTMA40 membrane showed a 51.7% elongation at break, while the 10% Jeffamine cross-linked membrane had a 166.8 % elongation at break. Clearly, the introducing of hydrophilic cross-linked network greatly enhanced the toughness of the AEMs. Overall, this thesis details a number of strategies for the large-scale production of PPO-based anion exchange membranes. These strategies will be useful in going forward in the design and deployment of hydroxide, bromide, bicarbonate, and chloride-conducting membranes for water purification and electrochemical technology.

Composite Electrolyte & Electrode Membranes for Electrochemical Energy Storage & Conversion Devices

Composite Electrolyte & Electrode Membranes for Electrochemical Energy Storage & Conversion Devices PDF Author: Giovanni Battista Appetecchi
Publisher: MDPI
ISBN: 3036507388
Category : Science
Languages : en
Pages : 164

Get Book Here

Book Description
Electrochemical energy systems can successfully exploit beneficial characteristics of electrolyte and/or electrode membranes due to their intriguing peculiarities that make them well-established, standard components in devices such as fuel cells, electrolyzers, and flow batteries. Therefore, more and more researchers are attracted by these challenging yet important issues regarding the performance and behavior of the final device. This Special Issue of Membranes offers scientists and readers involved in these topics an appealing forum to bring and summarize the forthcoming Research & Development results, which stipulates that the composite electrolyte/electrode membranes should be tailored for lithium batteries and fuel cells. Various key aspects, such as synthesis/preparation of materials/components, investigation of the physicochemical and electrochemical properties, understanding of phenomena within the materials and electrolyte/electrode interface, and device manufacturing and performance, were presented and discussed using key research teams from internationally recognized experts in these fields.

Alkaline Anion Exchange Membranes for Fuel Cells

Alkaline Anion Exchange Membranes for Fuel Cells PDF Author: Jince Thomas
Publisher: John Wiley & Sons
ISBN: 352735039X
Category : Technology & Engineering
Languages : en
Pages : 453

Get Book Here

Book Description
Alkaline Anion Exchange Membranes for Fuel Cells Build the fuel cells of the future with this cutting-edge material Alkaline anion exchange membranes (AAEMs) are cutting-edge polyelectrolyte materials with growing renewable energy applications including fuel cells, batteries, hydrogen electrolyzers and electrodialysis technologies. Their use in relatively new alkaline exchange membrane fuel cells (AEMFCs) is designed to produce cost-effective clean energy (electricity) produced by a chemical reaction. Rigorous studies are being conducted to meet the requirements of AAEMs precisely tailored for high anion conductivity and durability for future high energy efficient devices. Hence, over the past few years the academic and industrial scientific communities have explored various polymeric, composite and inorganic materials and studied their properties as a potential AAEM. The accumulated literature in this area of investigation is vast and in order to provide the community with the tools needed to strive forward, there is a clear need to condense this information in a single volume. Alkaline Anion Exchange Membranes for Fuel Cells meets this need with a comprehensive overview of the properties of these membranes and their applications. The book considers recent developments, common challenges, and the long-term prospects for this field of research and engineering. It constitutes a one-stop resource for the development and production of AAEM fuel cells and related electrochemical applications. Alkaline Anion Exchange Membranes for Fuel Cells readers will find: Discussion of electrochemical applications like redox flow batteries, water electrolysis, and many more Detailed treatment of specially tailored cationic groups such as quaternary ammonium and guanidinium Expert advice on efficient fabrication and electrode assembly Alkaline Anion Exchange Membranes for Fuel Cells is ideal for electrochemists, materials scientists, polymer chemists, electrical engineers, and anyone working in power technology or related fields.

Membranes for Low Temperature Fuel Cells

Membranes for Low Temperature Fuel Cells PDF Author: Surbhi Sharma
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311064732X
Category : Technology & Engineering
Languages : en
Pages : 172

Get Book Here

Book Description
Membranes for Low Temperature Fuel Cells provides a comprehensive review of novel and state-of-the-art polymer electrolyte membrane fuel cells (PEMFC) membranes. The author highlights requirements and considerations for a membrane as an integral part of PEMFC and its interactions with other components. It is an indispensible resource for anyone interested in new PEMFC membrane materials and concerned with the development, optimisation and testing of such membranes. Various composite membranes (polymer and non-polymer) are discussed along with analyses of the latest fi ller materials like graphene, ionic liquids, polymeric ionic liquids, nanostructured metal oxides and membrane concepts unfolding in the field of PEMFC. This book provides the latest academic and technical developments in PEMFC membranes with thorough insights into various preparation, characterisation, and testing methods utilised. Factors affecting proton conduction, water adsorption, and transportation behaviour of membranes are also deliberated upon. Provides the latest academic and technical developments in PEMFC membranes. Reviews recent literature on ex situ studies and in situ single-cell and stack tests investigating the durability (chemical, thermomechanical) and degradation of membranes. Surbhi Sharma, MSc, PhD Working on graphene oxide and fuel cells since 2007, she has published about 50 research articles/book chapters and holds a patent. She has also been awarded various research grants.

Membranes for Electrochemical Applications

Membranes for Electrochemical Applications PDF Author: Electrochemical Society (Ecs)
Publisher:
ISBN: 9781605601809
Category : Technology & Engineering
Languages : en
Pages : 59

Get Book Here

Book Description


Redox Flow Batteries

Redox Flow Batteries PDF Author: Huamin Zhang
Publisher: CRC Press
ISBN: 1351648721
Category : Science
Languages : en
Pages : 409

Get Book Here

Book Description
Flow batteries have received attention in large-scale energy storage due to their flexible design, high safety, high energy efficiency, and environmental friendliness. In recent years, they have been rapidly developed and tested in a variety of scales that prove their feasibility and advantages of use. As energy becomes a global focus, it is important to consider flow battery systems. This book offers a detailed introduction to the function of different kinds of redox flow batteries, including vanadium flow batteries, as well as the electrochemical processes for their development, materials and components, applications, and near future prospects. Redox Flow Batteries: Fundamentals and Applications will give readers a full understanding of flow batteries from fundamentals to commercial applications.

Organic-Inorganic Composite Polymer Electrolyte Membranes

Organic-Inorganic Composite Polymer Electrolyte Membranes PDF Author: Dr Inamuddin
Publisher: Springer
ISBN: 3319527398
Category : Technology & Engineering
Languages : en
Pages : 474

Get Book Here

Book Description
This volume explores the latest developments in the area of polymer electrolyte membranes (PEMs) used for high-temperature fuel cells. Featuring contributions from an international array of researchers, it presents a unified viewpoint on the operating principles of fuel cells, various methodologies used for the fabrication of PEMs, and issues related to the chemical and mechanical stabilities of the membranes. Special attention is given to the fabrication of electrospun nanocomposite membranes. The editors have consciously placed an emphasis on developments in the area of fast-growing and promising PEM materials obtained via hygroscopic inorganic fillers, solid proton conductors, heterocyclic solvents, ionic liquids, anhydrous H3PO4 blends, and heteropolyacids. This book is intended for fuel cell researchers and students who are interested in a deeper understanding of the organic–inorganic membranes used in fuel cells, membrane fabrication methodologies, properties and clean energy applications.

Ion-Exchange Membrane Separation Processes

Ion-Exchange Membrane Separation Processes PDF Author: H Strathmann
Publisher: Elsevier
ISBN: 0080509401
Category : Technology & Engineering
Languages : en
Pages : 361

Get Book Here

Book Description
Today, membranes and membrane processes are used as efficient tools for the separation of liquid mixtures or gases in the chemical and biomedical industry, in water desalination and wastewater purification. Despite the fact that various membrane processes, like reverse osmosis, are described in great detail in a number of books, processes involving ion-exchange membranes are only described in a fragmented way in scientific journals and patents; even though large industrial applications, like electrodialysis, have been around for over half a century. Therefore, this book is emphasizing on the most relevant aspects of ion-exchange membranes. This book provides a comprehensive overview of ion-exchange membrane separation processes covering the fundamentals as well as recent developments of the different products and processes and their applications. The audience for this book is heterogeneous, as it includes plant managers and process engineers as well as research scientists and graduate students. The separate chapters are based on different topics. The first chapter describes the relevant Electromembrane processes in a general overview. The second chapter explains thermodynamic and physicochemical fundamentals. The third chapter gives information about ion-exchange membrane preparation techniques, while the fourth and fifth chapter discusses the processes as unit operations giving examples for the design of specific plants. - First work on the principles and applications of electrodialysis and related separation processes - Presently no other comprehensive work that can serve as both reference work and text book is available - Book is suited for teaching students and as source for detailed information