Author: Jan Awrejcewicz
Publisher: World Scientific
ISBN: 981270910X
Category : Mathematics
Languages : en
Pages : 318
Book Description
This book focuses on the development of Melnikov-type methods applied to high dimensional dynamical systems governed by ordinary differential equations. Although the classical Melnikov's technique has found various applications in predicting homoclinic intersections, it is devoted only to the analysis of three-dimensional systems (in the case of mechanics, they represent one-degree-of-freedom nonautonomous systems). This book extends the classical Melnikov's approach to the study of high dimensional dynamical systems, and uses simple models of dry friction to analytically predict the occurrence of both stick-slip and slip-slip chaotic orbits, research which is very rarely reported in the existing literature even on one-degree-of-freedom nonautonomous dynamics. This pioneering attempt to predict the occurrence of deterministic chaos of nonlinear dynamical systems will attract many researchers including applied mathematicians, physicists, as well as practicing engineers. Analytical formulas are explicitly formulated step-by-step, even attracting potential readers without a rigorous mathematical background. Sample Chapter(s). Chapter 1: A Role of the Melnikov-Type Methods in Applied Sciences (137 KB). Contents: A Role of the Melnikov-Type Methods in Applied Sciences; Classical Melnikov Approach; Homoclinic Chaos Criterion in a Rotated Froude Pendulum with Dry Friction; Smooth and Nonsmooth Dynamics of a Quasi-Autonomous Oscillator with Coulomb and Viscous Frictions; Application of the MelnikovOCoGruendler Method to Mechanical Systems; A Self-Excited Spherical Pendulum; A Double Self-excited Duffing-type Oscillator; A Triple Self-Excited Duffing-type Oscillator. Readership: Graduate students and researchers in dynamical systems.
Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-Type Methods
Author: Jan Awrejcewicz
Publisher: World Scientific
ISBN: 981270910X
Category : Mathematics
Languages : en
Pages : 318
Book Description
This book focuses on the development of Melnikov-type methods applied to high dimensional dynamical systems governed by ordinary differential equations. Although the classical Melnikov's technique has found various applications in predicting homoclinic intersections, it is devoted only to the analysis of three-dimensional systems (in the case of mechanics, they represent one-degree-of-freedom nonautonomous systems). This book extends the classical Melnikov's approach to the study of high dimensional dynamical systems, and uses simple models of dry friction to analytically predict the occurrence of both stick-slip and slip-slip chaotic orbits, research which is very rarely reported in the existing literature even on one-degree-of-freedom nonautonomous dynamics. This pioneering attempt to predict the occurrence of deterministic chaos of nonlinear dynamical systems will attract many researchers including applied mathematicians, physicists, as well as practicing engineers. Analytical formulas are explicitly formulated step-by-step, even attracting potential readers without a rigorous mathematical background. Sample Chapter(s). Chapter 1: A Role of the Melnikov-Type Methods in Applied Sciences (137 KB). Contents: A Role of the Melnikov-Type Methods in Applied Sciences; Classical Melnikov Approach; Homoclinic Chaos Criterion in a Rotated Froude Pendulum with Dry Friction; Smooth and Nonsmooth Dynamics of a Quasi-Autonomous Oscillator with Coulomb and Viscous Frictions; Application of the MelnikovOCoGruendler Method to Mechanical Systems; A Self-Excited Spherical Pendulum; A Double Self-excited Duffing-type Oscillator; A Triple Self-Excited Duffing-type Oscillator. Readership: Graduate students and researchers in dynamical systems.
Publisher: World Scientific
ISBN: 981270910X
Category : Mathematics
Languages : en
Pages : 318
Book Description
This book focuses on the development of Melnikov-type methods applied to high dimensional dynamical systems governed by ordinary differential equations. Although the classical Melnikov's technique has found various applications in predicting homoclinic intersections, it is devoted only to the analysis of three-dimensional systems (in the case of mechanics, they represent one-degree-of-freedom nonautonomous systems). This book extends the classical Melnikov's approach to the study of high dimensional dynamical systems, and uses simple models of dry friction to analytically predict the occurrence of both stick-slip and slip-slip chaotic orbits, research which is very rarely reported in the existing literature even on one-degree-of-freedom nonautonomous dynamics. This pioneering attempt to predict the occurrence of deterministic chaos of nonlinear dynamical systems will attract many researchers including applied mathematicians, physicists, as well as practicing engineers. Analytical formulas are explicitly formulated step-by-step, even attracting potential readers without a rigorous mathematical background. Sample Chapter(s). Chapter 1: A Role of the Melnikov-Type Methods in Applied Sciences (137 KB). Contents: A Role of the Melnikov-Type Methods in Applied Sciences; Classical Melnikov Approach; Homoclinic Chaos Criterion in a Rotated Froude Pendulum with Dry Friction; Smooth and Nonsmooth Dynamics of a Quasi-Autonomous Oscillator with Coulomb and Viscous Frictions; Application of the MelnikovOCoGruendler Method to Mechanical Systems; A Self-Excited Spherical Pendulum; A Double Self-excited Duffing-type Oscillator; A Triple Self-Excited Duffing-type Oscillator. Readership: Graduate students and researchers in dynamical systems.
Poincaré-Andronov-Melnikov Analysis for Non-Smooth Systems
Author: Michal Feckan
Publisher: Academic Press
ISBN: 0128043644
Category : Mathematics
Languages : en
Pages : 262
Book Description
Poincaré-Andronov-Melnikov Analysis for Non-Smooth Systems is devoted to the study of bifurcations of periodic solutions for general n-dimensional discontinuous systems. The authors study these systems under assumptions of transversal intersections with discontinuity-switching boundaries. Furthermore, bifurcations of periodic sliding solutions are studied from sliding periodic solutions of unperturbed discontinuous equations, and bifurcations of forced periodic solutions are also investigated for impact systems from single periodic solutions of unperturbed impact equations. In addition, the book presents studies for weakly coupled discontinuous systems, and also the local asymptotic properties of derived perturbed periodic solutions. The relationship between non-smooth systems and their continuous approximations is investigated as well. Examples of 2-, 3- and 4-dimensional discontinuous ordinary differential equations and impact systems are given to illustrate the theoretical results. The authors use so-called discontinuous Poincaré mapping which maps a point to its position after one period of the periodic solution. This approach is rather technical, but it does produce results for general dimensions of spatial variables and parameters as well as the asymptotical results such as stability, instability, and hyperbolicity. - Extends Melnikov analysis of the classic Poincaré and Andronov staples, pointing to a general theory for freedom in dimensions of spatial variables and parameters as well as asymptotical results such as stability, instability, and hyperbolicity - Presents a toolbox of critical theoretical techniques for many practical examples and models, including non-smooth dynamical systems - Provides realistic models based on unsolved discontinuous problems from the literature and describes how Poincaré-Andronov-Melnikov analysis can be used to solve them - Investigates the relationship between non-smooth systems and their continuous approximations
Publisher: Academic Press
ISBN: 0128043644
Category : Mathematics
Languages : en
Pages : 262
Book Description
Poincaré-Andronov-Melnikov Analysis for Non-Smooth Systems is devoted to the study of bifurcations of periodic solutions for general n-dimensional discontinuous systems. The authors study these systems under assumptions of transversal intersections with discontinuity-switching boundaries. Furthermore, bifurcations of periodic sliding solutions are studied from sliding periodic solutions of unperturbed discontinuous equations, and bifurcations of forced periodic solutions are also investigated for impact systems from single periodic solutions of unperturbed impact equations. In addition, the book presents studies for weakly coupled discontinuous systems, and also the local asymptotic properties of derived perturbed periodic solutions. The relationship between non-smooth systems and their continuous approximations is investigated as well. Examples of 2-, 3- and 4-dimensional discontinuous ordinary differential equations and impact systems are given to illustrate the theoretical results. The authors use so-called discontinuous Poincaré mapping which maps a point to its position after one period of the periodic solution. This approach is rather technical, but it does produce results for general dimensions of spatial variables and parameters as well as the asymptotical results such as stability, instability, and hyperbolicity. - Extends Melnikov analysis of the classic Poincaré and Andronov staples, pointing to a general theory for freedom in dimensions of spatial variables and parameters as well as asymptotical results such as stability, instability, and hyperbolicity - Presents a toolbox of critical theoretical techniques for many practical examples and models, including non-smooth dynamical systems - Provides realistic models based on unsolved discontinuous problems from the literature and describes how Poincaré-Andronov-Melnikov analysis can be used to solve them - Investigates the relationship between non-smooth systems and their continuous approximations
Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles
Author: Maoan Han
Publisher: Springer Science & Business Media
ISBN: 1447129180
Category : Mathematics
Languages : en
Pages : 408
Book Description
Dynamical system theory has developed rapidly over the past fifty years. It is a subject upon which the theory of limit cycles has a significant impact for both theoretical advances and practical solutions to problems. Hopf bifurcation from a center or a focus is integral to the theory of bifurcation of limit cycles, for which normal form theory is a central tool. Although Hopf bifurcation has been studied for more than half a century, and normal form theory for over 100 years, efficient computation in this area is still a challenge with implications for Hilbert’s 16th problem. This book introduces the most recent developments in this field and provides major advances in fundamental theory of limit cycles. Split into two parts, the first focuses on the study of limit cycles bifurcating from Hopf singularity using normal form theory with later application to Hilbert’s 16th problem, while the second considers near Hamiltonian systems using Melnikov function as the main mathematical tool. Classic topics with new results are presented in a clear and concise manner and are accompanied by the liberal use of illustrations throughout. Containing a wealth of examples and structured algorithms that are treated in detail, a good balance between theoretical and applied topics is demonstrated. By including complete Maple programs within the text, this book also enables the reader to reconstruct the majority of formulas provided, facilitating the use of concrete models for study. Through the adoption of an elementary and practical approach, this book will be of use to graduate mathematics students wishing to study the theory of limit cycles as well as scientists, across a number of disciplines, with an interest in the applications of periodic behavior.
Publisher: Springer Science & Business Media
ISBN: 1447129180
Category : Mathematics
Languages : en
Pages : 408
Book Description
Dynamical system theory has developed rapidly over the past fifty years. It is a subject upon which the theory of limit cycles has a significant impact for both theoretical advances and practical solutions to problems. Hopf bifurcation from a center or a focus is integral to the theory of bifurcation of limit cycles, for which normal form theory is a central tool. Although Hopf bifurcation has been studied for more than half a century, and normal form theory for over 100 years, efficient computation in this area is still a challenge with implications for Hilbert’s 16th problem. This book introduces the most recent developments in this field and provides major advances in fundamental theory of limit cycles. Split into two parts, the first focuses on the study of limit cycles bifurcating from Hopf singularity using normal form theory with later application to Hilbert’s 16th problem, while the second considers near Hamiltonian systems using Melnikov function as the main mathematical tool. Classic topics with new results are presented in a clear and concise manner and are accompanied by the liberal use of illustrations throughout. Containing a wealth of examples and structured algorithms that are treated in detail, a good balance between theoretical and applied topics is demonstrated. By including complete Maple programs within the text, this book also enables the reader to reconstruct the majority of formulas provided, facilitating the use of concrete models for study. Through the adoption of an elementary and practical approach, this book will be of use to graduate mathematics students wishing to study the theory of limit cycles as well as scientists, across a number of disciplines, with an interest in the applications of periodic behavior.
The Melnikov House, Moscow (1927 - 1929)
Author: Juhani Pallasmaa
Publisher: Academy Press
ISBN:
Category : Architecture
Languages : en
Pages : 84
Book Description
Detailed documentation of this unique house, renowned for its interlocking circle design.
Publisher: Academy Press
ISBN:
Category : Architecture
Languages : en
Pages : 84
Book Description
Detailed documentation of this unique house, renowned for its interlocking circle design.
Geometry of the Melnikov Vector
Author: Masahiro Yamashita
Publisher:
ISBN:
Category : Hamiltonian systems
Languages : en
Pages : 226
Book Description
Publisher:
ISBN:
Category : Hamiltonian systems
Languages : en
Pages : 226
Book Description
Melnikov
Author: S. Frederick Starr
Publisher:
ISBN: 9780691003313
Category : Architectes - Russie - Biographies
Languages : en
Pages : 276
Book Description
A study of the life and architectural works of Konstantin Stepanovich Melnikov, who was a Russian architect and painter. His architectural work, compressed into a single decade, placed Melnikov on the front end of 1920s avant-garde architecture.
Publisher:
ISBN: 9780691003313
Category : Architectes - Russie - Biographies
Languages : en
Pages : 276
Book Description
A study of the life and architectural works of Konstantin Stepanovich Melnikov, who was a Russian architect and painter. His architectural work, compressed into a single decade, placed Melnikov on the front end of 1920s avant-garde architecture.
Ultra Clean Processing of Semiconductor Surfaces XIV
Author: Paul Mertens
Publisher: Trans Tech Publications Ltd
ISBN: 3035734178
Category : Technology & Engineering
Languages : en
Pages : 339
Book Description
14th International Symposium on Ultra Clean Processing of Semiconductor Surfaces (14th UCPSS 2018) Selected, peer reviewed papers from the 14th International Symposium on Ultra Clean Processing of Semiconductor Surfaces (14th UCPSS 2018), September 3-5, 2018, Leuven, Belgium
Publisher: Trans Tech Publications Ltd
ISBN: 3035734178
Category : Technology & Engineering
Languages : en
Pages : 339
Book Description
14th International Symposium on Ultra Clean Processing of Semiconductor Surfaces (14th UCPSS 2018) Selected, peer reviewed papers from the 14th International Symposium on Ultra Clean Processing of Semiconductor Surfaces (14th UCPSS 2018), September 3-5, 2018, Leuven, Belgium
Albert Einstein Century International Conference
Author: Jean-Michel Alimi
Publisher: American Institute of Physics
ISBN:
Category : Science
Languages : en
Pages : 354
Book Description
Paris, France, 18-22 July 2005
Publisher: American Institute of Physics
ISBN:
Category : Science
Languages : en
Pages : 354
Book Description
Paris, France, 18-22 July 2005
Proceedings of the Sir Arthur Eddington Centenary Symposium: Gravitational radiation and relativity
Author: Venzo De Sabbata
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 484
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 484
Book Description
Eesti Teaduste Akadeemia Toimetised
Author:
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 332
Book Description
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 332
Book Description