Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems

Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems PDF Author: Eusebius Doedel
Publisher: Springer Science & Business Media
ISBN: 1461212081
Category : Mathematics
Languages : en
Pages : 482

Get Book Here

Book Description
The Institute for Mathematics and its Applications (IMA) devoted its 1997-1998 program to Emerging Applications of Dynamical Systems. Dynamical systems theory and related numerical algorithms provide powerful tools for studying the solution behavior of differential equations and mappings. In the past 25 years computational methods have been developed for calculating fixed points, limit cycles, and bifurcation points. A remaining challenge is to develop robust methods for calculating more complicated objects, such as higher- codimension bifurcations of fixed points, periodic orbits, and connecting orbits, as well as the calcuation of invariant manifolds. Another challenge is to extend the applicability of algorithms to the very large systems that result from discretizing partial differential equations. Even the calculation of steady states and their linear stability can be prohibitively expensive for large systems (e.g. 10_3- -10_6 equations) if attempted by simple direct methods. Several of the papers in this volume treat computational methods for low and high dimensional systems and, in some cases, their incorporation into software packages. A few papers treat fundamental theoretical problems, including smooth factorization of matrices, self -organized criticality, and unfolding of singular heteroclinic cycles. Other papers treat applications of dynamical systems computations in various scientific fields, such as biology, chemical engineering, fluid mechanics, and mechanical engineering.

Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems

Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems PDF Author: Eusebius Doedel
Publisher: Springer Science & Business Media
ISBN: 1461212081
Category : Mathematics
Languages : en
Pages : 482

Get Book Here

Book Description
The Institute for Mathematics and its Applications (IMA) devoted its 1997-1998 program to Emerging Applications of Dynamical Systems. Dynamical systems theory and related numerical algorithms provide powerful tools for studying the solution behavior of differential equations and mappings. In the past 25 years computational methods have been developed for calculating fixed points, limit cycles, and bifurcation points. A remaining challenge is to develop robust methods for calculating more complicated objects, such as higher- codimension bifurcations of fixed points, periodic orbits, and connecting orbits, as well as the calcuation of invariant manifolds. Another challenge is to extend the applicability of algorithms to the very large systems that result from discretizing partial differential equations. Even the calculation of steady states and their linear stability can be prohibitively expensive for large systems (e.g. 10_3- -10_6 equations) if attempted by simple direct methods. Several of the papers in this volume treat computational methods for low and high dimensional systems and, in some cases, their incorporation into software packages. A few papers treat fundamental theoretical problems, including smooth factorization of matrices, self -organized criticality, and unfolding of singular heteroclinic cycles. Other papers treat applications of dynamical systems computations in various scientific fields, such as biology, chemical engineering, fluid mechanics, and mechanical engineering.

Numerical Methods for Bifurcations of Dynamical Equilibria

Numerical Methods for Bifurcations of Dynamical Equilibria PDF Author: Willy J. F. Govaerts
Publisher: SIAM
ISBN: 0898714427
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
Numerical methods for the detection, computation, and continuation of equilibria and bifurcation points of equilibria of dynamical systems.

Numerical Bifurcation Analysis for Reaction-Diffusion Equations

Numerical Bifurcation Analysis for Reaction-Diffusion Equations PDF Author: Zhen Mei
Publisher: Springer Science & Business Media
ISBN: 3662041774
Category : Mathematics
Languages : en
Pages : 422

Get Book Here

Book Description
This monograph is the first to provide readers with numerical tools for a systematic analysis of bifurcation problems in reaction-diffusion equations. Many examples and figures illustrate analysis of bifurcation scenario and implementation of numerical schemes. Readers will gain a thorough understanding of numerical bifurcation analysis and the necessary tools for investigating nonlinear phenomena in reaction-diffusion equations.

Exploiting Symmetry in Applied and Numerical Analysis

Exploiting Symmetry in Applied and Numerical Analysis PDF Author: Eugene L. Allgower
Publisher: American Mathematical Soc.
ISBN: 9780821896976
Category : Mathematics
Languages : en
Pages : 476

Get Book Here

Book Description
Symmetry plays an important role in theoretical physics, applied analysis, classical differential equations, and bifurcation theory. Although numerical analysis has incorporated aspects of symmetry on an ad hoc basis, there is now a growing collection of numerical analysts who are currently attempting to use symmetry groups and representation theory as fundamental tools in their work. This book contains the proceedings of an AMS-SIAM Summer Seminar in Applied Mathematics, held in 1992 at Colorado State University. The seminar, which drew about 100 scientists from around the world, was intended to stimulate the systematic incorporation of symmetry and group theoretical concepts into numerical methods. The papers in this volume have been refereed and will not be published elsewhere.

Numerical Methods for Nonlinear Elliptic Differential Equations

Numerical Methods for Nonlinear Elliptic Differential Equations PDF Author: Klaus Böhmer
Publisher: Oxford University Press
ISBN: 0199577048
Category : Computers
Languages : en
Pages : 775

Get Book Here

Book Description
Boehmer systmatically handles the different numerical methods for nonlinear elliptic problems.

Nonlinear Analysis of Structures (1997)

Nonlinear Analysis of Structures (1997) PDF Author: Muthukrishnan Sathyamoorthy
Publisher: CRC Press
ISBN: 1351359819
Category : Mathematics
Languages : en
Pages : 548

Get Book Here

Book Description
Nonlinear Analysis of Structures presents a complete evaluation of the nonlinear static and dynamic behavior of beams, rods, plates, trusses, frames, mechanisms, stiffened structures, sandwich plates, and shells. These elements are important components in a wide variety of structures and vehicles such as spacecraft and missiles, underwater vessels and structures, and modern housing. Today's engineers and designers must understand these elements and their behavior when they are subjected to various types of loads. Coverage includes the various types of nonlinearities, stress-strain relations and the development of nonlinear governing equations derived from nonlinear elastic theory. This complete guide includes both mathematical treatment and real-world applications, with a wealth of problems and examples to support the text. Special topics include a useful and informative chapter on nonlinear analysis of composite structures, and another on recent developments in symbolic computation. Designed for both self-study and classroom instruction, Nonlinear Analysis of Structures is also an authoritative reference for practicing engineers and scientists. One of the world's leaders in the study of nonlinear structural analysis, Professor Sathyamoorthy has made significant research contributions to the field of nonlinear mechanics for twenty-seven years. His foremost contribution to date has been the development of a unique transverse shear deformation theory for plates undergoing large amplitude vibrations and the examination of multiple mode solutions for plates. In addition to his notable research, Professor Sathyamoorthy has also developed and taught courses in the field at universities in India, Canada, and the United States.

Algorithms in Algebraic Geometry

Algorithms in Algebraic Geometry PDF Author: Alicia Dickenstein
Publisher: Springer Science & Business Media
ISBN: 0387751556
Category : Mathematics
Languages : en
Pages : 162

Get Book Here

Book Description
In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its Applications on September 2006 is one tangible indication of the interest. This volume of articles captures some of the spirit of the IMA workshop.

Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems

Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems PDF Author: Bernold Fiedler
Publisher: Springer Science & Business Media
ISBN: 3642565891
Category : Mathematics
Languages : en
Pages : 816

Get Book Here

Book Description
Presenting very recent results in a major research area, this book is addressed to experts and non-experts in the mathematical community alike. The applied issues range from crystallization and dendrite growth to quantum chaos, conveying their significance far into the neighboring disciplines of science.

Variational Methods: Open Problems, Recent Progress, and Numerical Algorithms

Variational Methods: Open Problems, Recent Progress, and Numerical Algorithms PDF Author: John Neuberger
Publisher: American Mathematical Soc.
ISBN: 0821833391
Category : Mathematics
Languages : en
Pages : 298

Get Book Here

Book Description
This volume contains the proceedings of the conference on Variational Methods: Open Problems, Recent Progress, and Numerical Algorithms. It presents current research in variational methods as applied to nonlinear elliptic PDE, although several articles concern nonlinear PDE that are nonvariational and/or nonelliptic. The book contains both survey and research papers discussing important open questions and offering suggestions on analytical and numerical techniques for solving those open problems. It is suitable for graduate students and research mathematicians interested in elliptic partial differential equations.

Bifurcation and Chaos: Analysis, Algorithms, Applications

Bifurcation and Chaos: Analysis, Algorithms, Applications PDF Author: KÜPPER
Publisher: Birkhäuser
ISBN: 3034870043
Category : Mathematics
Languages : en
Pages : 363

Get Book Here

Book Description
This volume contains the proceedings of a conference held in Wiirzburg, August 20-24, 1990. The theme of the conference was Bifurcation and Chaos: Analysis, Algorithms, Ap plications. More than 100 scientists from 21 countries presented 80 contributions. Many of the results of the conference are described in the 49 refereed papers that follow. The conference was sponsored by the Deutsche Forschungsgemeinschaft, and by the Deutscher Akademischer Austauschdienst. We gratefully acknowledge the support from these agen cies. The science of nonlinear phenomena is evolving rapidly. Over the last 10 years, the emphasis has been gradually shifting. How trends vary may be seen by comparing these proceedings with previous ones, in particular with the conference held in Dortmund 1986 (proceedings published in ISNM 79). Concerning the range of phenomena, chaos has joined the bifurcation scenarios. As expected, the acceptance of chaos is less emotional among professionals, than it has been in some popular publications. A nalytical methods appear to have reached a state in which basic results of singularities, symmetry groups, or normal forms are everyday experience rather than exciting news. Similarly, numerical algorithms for frequent situations are now well established. Implemented in several packages, such algorithms have become standard means for attacking nonlinear problems. The sophisti cation that analytical and numerical methods have reached supports the vigorous trend to more and more applications. Pioneering equations as those named after Duffing, Van der Pol, or Lorenz, are no longer exclusively the state of art.