Mechanobiology Handbook, Second Edition

Mechanobiology Handbook, Second Edition PDF Author: Jiro Nagatomi
Publisher: CRC Press
ISBN: 042981674X
Category : Medical
Languages : en
Pages : 705

Get Book Here

Book Description
Mechanobiology—the study of the effects of mechanics on biological events—has evolved to answer numerous research questions. Mechanobiology Handbook 2nd Edition is a reference book for engineers, scientists, and clinicians who are interested in mechanobiology and a textbook for senior undergraduate to graduate level students of this growing field. Readers will gain a comprehensive review of recent research findings as well as elementary chapters on solid mechanics, fluid mechanics, and molecular analysis techniques. The new edition presents, in addition to the chapters of the first edition, homework problem sets that are available online and reviews of research in uncovered areas. Moreover, the new edition includes chapters on statistical analysis, design of experiments and optical imaging. The editors of this book are researchers and educators in mechanobiology. They realized a need for a single volume to assist course instructors as a guide for didactic teaching of mechanobiology to a diverse student body. A mechanobiology course is frequently made up of both undergraduate and graduate students pursuing degrees in engineering, biology, or integrated engineering and biology. Their goal was to present both the elementary and cutting-edge aspects of mechanobiology in a manner that is accessible to students from many different academic levels and from various disciplinary backgrounds. Moreover, it is their hope that the readers of Mechanobiology Handbook 2nd Edition will find study questions at the end of each chapter useful for long-term learning and further discussion. Comprehensive collection of reviews of recent research Introductory materials in mechanics, biology, and statistics Discussion of pioneering and emerging mechanobiology concepts Presentation of cutting-edge mechanobiology research findings across various fields and organ systems End of chapter study questions, available online Considering the complexity of the mechanics and the biology of the human body, most of the world of mechanobiology remains to be studied. Since the field is still developing, the Mechanobiology Handbook raises many different viewpoints and approaches with the intention of stimulating further research endeavours.

Mechanobiology Handbook, Second Edition

Mechanobiology Handbook, Second Edition PDF Author: Jiro Nagatomi
Publisher: CRC Press
ISBN: 042981674X
Category : Medical
Languages : en
Pages : 705

Get Book Here

Book Description
Mechanobiology—the study of the effects of mechanics on biological events—has evolved to answer numerous research questions. Mechanobiology Handbook 2nd Edition is a reference book for engineers, scientists, and clinicians who are interested in mechanobiology and a textbook for senior undergraduate to graduate level students of this growing field. Readers will gain a comprehensive review of recent research findings as well as elementary chapters on solid mechanics, fluid mechanics, and molecular analysis techniques. The new edition presents, in addition to the chapters of the first edition, homework problem sets that are available online and reviews of research in uncovered areas. Moreover, the new edition includes chapters on statistical analysis, design of experiments and optical imaging. The editors of this book are researchers and educators in mechanobiology. They realized a need for a single volume to assist course instructors as a guide for didactic teaching of mechanobiology to a diverse student body. A mechanobiology course is frequently made up of both undergraduate and graduate students pursuing degrees in engineering, biology, or integrated engineering and biology. Their goal was to present both the elementary and cutting-edge aspects of mechanobiology in a manner that is accessible to students from many different academic levels and from various disciplinary backgrounds. Moreover, it is their hope that the readers of Mechanobiology Handbook 2nd Edition will find study questions at the end of each chapter useful for long-term learning and further discussion. Comprehensive collection of reviews of recent research Introductory materials in mechanics, biology, and statistics Discussion of pioneering and emerging mechanobiology concepts Presentation of cutting-edge mechanobiology research findings across various fields and organ systems End of chapter study questions, available online Considering the complexity of the mechanics and the biology of the human body, most of the world of mechanobiology remains to be studied. Since the field is still developing, the Mechanobiology Handbook raises many different viewpoints and approaches with the intention of stimulating further research endeavours.

Mechanobiology Handbook, Second Edition

Mechanobiology Handbook, Second Edition PDF Author: Jiro Nagatomi
Publisher: CRC Press
ISBN: 0429816731
Category : Medical
Languages : en
Pages : 927

Get Book Here

Book Description
Mechanobiology—the study of the effects of mechanics on biological events—has evolved to answer numerous research questions. Mechanobiology Handbook 2nd Edition is a reference book for engineers, scientists, and clinicians who are interested in mechanobiology and a textbook for senior undergraduate to graduate level students of this growing field. Readers will gain a comprehensive review of recent research findings as well as elementary chapters on solid mechanics, fluid mechanics, and molecular analysis techniques. The new edition presents, in addition to the chapters of the first edition, homework problem sets that are available online and reviews of research in uncovered areas. Moreover, the new edition includes chapters on statistical analysis, design of experiments and optical imaging. The editors of this book are researchers and educators in mechanobiology. They realized a need for a single volume to assist course instructors as a guide for didactic teaching of mechanobiology to a diverse student body. A mechanobiology course is frequently made up of both undergraduate and graduate students pursuing degrees in engineering, biology, or integrated engineering and biology. Their goal was to present both the elementary and cutting-edge aspects of mechanobiology in a manner that is accessible to students from many different academic levels and from various disciplinary backgrounds. Moreover, it is their hope that the readers of Mechanobiology Handbook 2nd Edition will find study questions at the end of each chapter useful for long-term learning and further discussion. Comprehensive collection of reviews of recent research Introductory materials in mechanics, biology, and statistics Discussion of pioneering and emerging mechanobiology concepts Presentation of cutting-edge mechanobiology research findings across various fields and organ systems End of chapter study questions, available online Considering the complexity of the mechanics and the biology of the human body, most of the world of mechanobiology remains to be studied. Since the field is still developing, the Mechanobiology Handbook raises many different viewpoints and approaches with the intention of stimulating further research endeavours.

Cardiovascular Mechanobiology, 2nd edition

Cardiovascular Mechanobiology, 2nd edition PDF Author: Markus Hecker
Publisher: Frontiers Media SA
ISBN: 2832530508
Category : Science
Languages : en
Pages : 169

Get Book Here

Book Description
Biomechanical forces play a major role in organ development, shape and function. When exceeding the physiological range, however, they may become detrimental for organ structure and function. This is probably best exemplified by the cardiovascular system, with both the heart and blood vessels being continuously exposed to the biomechanical forces exerted by the flow of blood. In the heart, it is the build-up of pressure inside the ventricles that allows the ejection of blood into the pulmonary and systemic circulation. The luminal diameter of the small arteries in both parts of the circulation determines the resistance to flow. Hence it also determines the level of blood pressure in both the pulmonary and systemic circulation and thus the afterload for both ventricles of the heart. A narrowing of the small arteries (e.g. due to an increase in tone) therefore leads to an increase in blood pressure in the affected part of the circulation. This will decrease organ perfusion but increase the afterload for the corresponding ventricle of the heart. Consequently, the affected ventricle must build up more pressure to maintain cardiac output. However, if the rise in blood pressure (pulmonary or arterial hypertension) persists the increase in wall tension can no longer be compensated by active constriction, thereby forcing the ventricle to resort to other means to unload itself. Typically, this is achieved by structural alterations in its wall which becomes thicker (hypertrophy) and stiffer (remodelling of the extracellular matrix). Ultimately, this maladaptive response may lead to dysfunction and eventually failure of the ventricle, which would only be able to eject a significantly smaller amount of blood into circulation. The increase in wall tension has resulted in an increased stretching of the cardiomyocytes as well as non-cardiomyocytes, such as cardiac fibroblasts, which in turn alters both their phenotype and their environment. Research into the mechanobiology of the heart aims to unravel the molecular and cellular mechanisms underlying the physiological response of the heart to load to learn what goes wrong when the heart is faced with sustained pressure overload. This may pave the way to therapeutically interfering with this maladaptive response and thus preventing either the initial hypertrophy or its transition into heart failure. While the heart is mainly subjected to pressure hence stretch as a biomechanical force, the mechanobiology of vascular cells is somewhat more complex. Endothelial cells lining the luminal surface of each blood vessel are continuously subjected to the viscous drag of flowing blood (referred to as fluid shear stress). Fluid shear stress mainly affects the endothelial cells of the small arteries and arterioles, maintaining them in a dormant phenotype. If blood flow is disturbed (e.g. at arterial bifurcations or curvatures) fluid shear stress declines and may give rise to a shift in phenotype of the endothelial cells. A shift from anti-inflammatory to pro-inflammatory in combination with the reduced flow at these sites may enable leukocyte recruitment and diapedesis, which results in a pro-inflammatory response in the vessel wall. Endothelial cells and in particular vascular smooth muscle cells are subjected to another biomechanical force: the blood pressure. Volume-dependent distention of the vessel wall (which can be achieved through an increase in blood flow) results in an increase in wall tension, thereby stretching of the endothelial and smooth muscle cells. Like the cardiomyocytes of the heart, the vascular smooth muscle cells of the small arteries and arterioles try to normalise wall tension by active constriction, which cannot be maintained for long. These cells subsequently undergo hypertrophy or hyperplasia (depending on the size of the blood vessel) and remodel the extracellular matrix so that the vessel wall also becomes thicker and stiffer. This in turn raises their resistance to flow and may contribute to the increase in blood pressure in either the pulmonary or systemic circulation. Research into the mechanobiology of the blood vessels aims to unravel the molecular and cellular mechanisms underlying the physiological response of the vascular cells to pressure (wall tension) and flow (shear stress). It also aims to uncover what goes wrong (e.g. in arteriosclerosis or hypertension) and to eventually specifically interfere with these maladaptive remodelling processes. The aforementioned aspects of cardiovascular mechanobiology along with many more facets of this fascinating, timely and highly clinically relevant field of research are addressed by the original research and review articles within this Research Topic.

Biomedical Photonics Handbook, Second Edition

Biomedical Photonics Handbook, Second Edition PDF Author: Tuan Vo-Dinh
Publisher: CRC Press
ISBN: 1420085123
Category : Medical
Languages : en
Pages : 854

Get Book Here

Book Description
Shaped by Quantum Theory, Technology, and the Genomics Revolution The integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents recent fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, students, and clinical providers. The first volume, Fundamentals, Devices, and Techniques, focuses on the fundamentals of biophotonics, optical techniques, and devices. Represents the Collective Work of over 150 Scientists, Engineers, and Clinicians Designed to display the most recent advances in instrumentation and methods, as well as clinical applications in important areas of biomedical photonics to a broad audience, this three-volume handbook provides an inclusive forum that serves as an authoritative reference source for a broad audience involved in the research, teaching, learning, and practice of medical technologies. What’s New in This Edition: A wide variety of photonic biochemical sensing technologies has already been developed for clinical monitoring of physiological parameters, such as blood pressure, blood chemistry, pH, temperature, and the presence of pathological organisms or biochemical species of clinical importance. Advanced photonic detection technologies integrating the latest knowledge of genomics, proteomics, and metabolomics allow sensing of early disease states, thus revolutionizing the medicine of the future. Nanobiotechnology has opened new possibilities for detection of biomarkers of disease, imaging single molecules, and in situ diagnostics at the single-cell level. In addition to these state-of-the-art advancements, the second edition contains new topics and chapters including: • Fiber Optic Probe Design • Laser and Optical Radiation Safety • Photothermal Detection • Multidimensional Fluorescence Imaging • Surface Plasmon Resonance Imaging • Molecular Contrast Optical Coherence Tomography • Multiscale Photoacoustics • Polarized Light for Medical Diagnostics • Quantitative Diffuse Reflectance Imaging • Interferometric Light Scattering • Nonlinear Interferometric Vibrational Imaging • Multimodality Theranostics Nanoplatforms • Nanoscintillator-Based Therapy • SERS Molecular Sentinel Nanoprobes • Plasmonic Coupling Interference Nanoprobes Comprised of three books: Volume I: Fundamentals, Devices, and Techniques; Volume II: Biomedical Diagnostics; and Volume III: Therapeutics and Advanced Biophotonics, this second edition contains eight sections, and provides introductory material in each chapter. It also includes an overview of the topic, an extensive collection of spectroscopic data, and lists of references for further reading.

Mechanobiology in Health and Disease

Mechanobiology in Health and Disease PDF Author: Stefaan Verbruggen
Publisher: Academic Press
ISBN: 0128129530
Category : Medical
Languages : en
Pages : 530

Get Book Here

Book Description
Mechanobiology in Health and Disease brings together contributions from leading biologists, clinicians, physicists and engineers in one convenient volume, providing a unified source of information for researchers in this highly multidisciplinary area. Opening chapters provide essential background information on cell mechanotransduction and essential mechanobiology methods and techniques. Other sections focus on the study of mechanobiology in healthy systems, including bone, tendons, muscles, blood vessels, the heart and the skin, as well as mechanobiology studies of pregnancy. Final chapters address the nascent area of mechanobiology in disease, from the study of bone conditions, skin diseases and heart diseases to cancer. A discussion of future perspectives for research completes each chapter in the volume. This is a timely resource for both early-career and established researchers working on mechanobiology. - Provides an essential digest of primary research from many fields and disciplines in one convenient volume - Covers both experimental approaches and descriptions of mechanobiology problems from mathematical and numerical perspectives - Addresses the hot topic of mechanobiology in disease, a particularly dynamic field of frontier science

Multiscale Modeling in Biomechanics and Mechanobiology

Multiscale Modeling in Biomechanics and Mechanobiology PDF Author: Suvranu De
Publisher: Springer
ISBN: 1447165993
Category : Technology & Engineering
Languages : en
Pages : 287

Get Book Here

Book Description
Presenting a state-of-the-art overview of theoretical and computational models that link characteristic biomechanical phenomena, this book provides guidelines and examples for creating multiscale models in representative systems and organisms. It develops the reader's understanding of and intuition for multiscale phenomena in biomechanics and mechanobiology, and introduces a mathematical framework and computational techniques paramount to creating predictive multiscale models. Biomechanics involves the study of the interactions of physical forces with biological systems at all scales – including molecular, cellular, tissue and organ scales. The emerging field of mechanobiology focuses on the way that cells produce and respond to mechanical forces – bridging the science of mechanics with the disciplines of genetics and molecular biology. Linking disparate spatial and temporal scales using computational techniques is emerging as a key concept in investigating some of the complex problems underlying these disciplines. Providing an invaluable field manual for graduate students and researchers of theoretical and computational modelling in biology, this book is also intended for readers interested in biomedical engineering, applied mechanics and mathematical biology.

Multiscale Mechanobiology of Bone Remodeling and Adaptation

Multiscale Mechanobiology of Bone Remodeling and Adaptation PDF Author: Peter Pivonka
Publisher: Springer
ISBN: 3319588451
Category : Science
Languages : en
Pages : 295

Get Book Here

Book Description
The book presents state-of-the-art developments in multiscale modeling and latest experimental data on multiscale mechanobiology of bone remodeling and adaptation including fracture healing applications. The multiscale models include musculoskeletal models describing bone-muscle interactions during daily activities such as walking or running, micromechanical models for estimation of bone mechanical properties, bone remodeling and adaptation models, cellular models describing the complex bone-cell interactions taking into account biochemical and biomechanical regulatory factors. Also subcellular processes are covered including arrangement of actin filaments due to mechanical loading and change of receptor configurations.

Handbook of Lubrication and Tribology, Volume II

Handbook of Lubrication and Tribology, Volume II PDF Author: Robert W. Bruce
Publisher: CRC Press
ISBN: 1420069098
Category : Science
Languages : en
Pages : 1139

Get Book Here

Book Description
Since the publication of the best-selling first edition, the growing price and environmental cost of energy have increased the significance of tribology. Handbook of Lubrication and Tribology, Volume II: Theory and Design, Second Edition demonstrates how the principles of tribology can address cost savings, energy conservation, and environmental pr

Handbook of Cosmetic Science and Technology

Handbook of Cosmetic Science and Technology PDF Author: André O. Barel
Publisher: CRC Press
ISBN: 1842145657
Category : Medical
Languages : en
Pages : 698

Get Book Here

Book Description
Written by experienced and internationally renowned contributors, this is the fourth edition of what has become the standard reference for cosmetic scientists and dermatologists seeking the latest innovations and technology for the formulation, design, testing, use, and production of cosmetic products for skin, hair, and nails. New to this fourth e

Handbook of Lubrication and Tribology

Handbook of Lubrication and Tribology PDF Author: Robert W. Bruce
Publisher: CRC Press
ISBN: 142006908X
Category : Technology & Engineering
Languages : en
Pages : 1173

Get Book Here

Book Description
Since the publication of the best-selling first edition, the growing price and environmental cost of energy have increased the significance of tribology. Handbook of Lubrication and Tribology, Volume II: Theory and Design, Second Edition demonstrates how the principles of tribology can address cost savings, energy conservation, and environmental protection. This second edition provides a thorough treatment of established knowledge and practices, along with detailed references for further study. Written by the foremost experts in the field, the book is divided into four sections. The first reviews the basic principles of tribology, wear mechanisms, and modes of lubrication. The second section covers the full range of lubricants/coolants, including mineral oil, synthetic fluids, and water-based fluids. In the third section, the contributors describe many wear- and friction-reducing materials and treatments, which are currently the fastest growing areas of tribology, with announcements of new coatings, better performance, and new vendors being made every month. The final section presents components, equipment, and designs commonly found in tribological systems. It also examines specific industrial areas and their processes. Sponsored by the Society of Tribologists and Lubrication Engineers, this handbook incorporates up-to-date, peer-reviewed information for tackling tribological problems and improving lubricants and tribological systems. The book shows how the proper use of generally accepted tribological practices can save money, conserve energy, and protect the environment.