Author: Akhmerov
Publisher: Birkhäuser
ISBN: 3034857276
Category : Science
Languages : en
Pages : 260
Book Description
A condensing (or densifying) operator is a mapping under which the image of any set is in a certain sense more compact than the set itself. The degree of noncompactness of a set is measured by means of functions called measures of noncompactness. The contractive maps and the compact maps [i.e., in this Introduction, the maps that send any bounded set into a relatively compact one; in the main text the term "compact" will be reserved for the operators that, in addition to having this property, are continuous, i.e., in the authors' terminology, for the completely continuous operators] are condensing. For contractive maps one can take as measure of noncompactness the diameter of a set, while for compact maps can take the indicator function of a family of non-relatively com pact sets. The operators of the form F( x) = G( x, x), where G is contractive in the first argument and compact in the second, are also condensing with respect to some natural measures of noncompactness. The linear condensing operators are characterized by the fact that almost all of their spectrum is included in a disc of radius smaller than one. The examples given above show that condensing operators are a sufficiently typical phenomenon in various applications of functional analysis, for example, in the theory of differential and integral equations. As is turns out, the condensing operators have properties similar to the compact ones.
Measures of Noncompactness and Condensing Operators
Author: Akhmerov
Publisher: Birkhäuser
ISBN: 3034857276
Category : Science
Languages : en
Pages : 260
Book Description
A condensing (or densifying) operator is a mapping under which the image of any set is in a certain sense more compact than the set itself. The degree of noncompactness of a set is measured by means of functions called measures of noncompactness. The contractive maps and the compact maps [i.e., in this Introduction, the maps that send any bounded set into a relatively compact one; in the main text the term "compact" will be reserved for the operators that, in addition to having this property, are continuous, i.e., in the authors' terminology, for the completely continuous operators] are condensing. For contractive maps one can take as measure of noncompactness the diameter of a set, while for compact maps can take the indicator function of a family of non-relatively com pact sets. The operators of the form F( x) = G( x, x), where G is contractive in the first argument and compact in the second, are also condensing with respect to some natural measures of noncompactness. The linear condensing operators are characterized by the fact that almost all of their spectrum is included in a disc of radius smaller than one. The examples given above show that condensing operators are a sufficiently typical phenomenon in various applications of functional analysis, for example, in the theory of differential and integral equations. As is turns out, the condensing operators have properties similar to the compact ones.
Publisher: Birkhäuser
ISBN: 3034857276
Category : Science
Languages : en
Pages : 260
Book Description
A condensing (or densifying) operator is a mapping under which the image of any set is in a certain sense more compact than the set itself. The degree of noncompactness of a set is measured by means of functions called measures of noncompactness. The contractive maps and the compact maps [i.e., in this Introduction, the maps that send any bounded set into a relatively compact one; in the main text the term "compact" will be reserved for the operators that, in addition to having this property, are continuous, i.e., in the authors' terminology, for the completely continuous operators] are condensing. For contractive maps one can take as measure of noncompactness the diameter of a set, while for compact maps can take the indicator function of a family of non-relatively com pact sets. The operators of the form F( x) = G( x, x), where G is contractive in the first argument and compact in the second, are also condensing with respect to some natural measures of noncompactness. The linear condensing operators are characterized by the fact that almost all of their spectrum is included in a disc of radius smaller than one. The examples given above show that condensing operators are a sufficiently typical phenomenon in various applications of functional analysis, for example, in the theory of differential and integral equations. As is turns out, the condensing operators have properties similar to the compact ones.
Measures of Noncompactness and Condensing Operators
Author: R. R. Akhmerov
Publisher: Birkhauser
ISBN: 9780817627164
Category : Mathematics
Languages : en
Pages : 249
Book Description
Publisher: Birkhauser
ISBN: 9780817627164
Category : Mathematics
Languages : en
Pages : 249
Book Description
Measure of Noncompactness, Fixed Point Theorems, and Applications
Author: S. A. Mohiuddine
Publisher: CRC Press
ISBN: 1040013325
Category : Mathematics
Languages : en
Pages : 205
Book Description
The theory of the measure of noncompactness has proved its significance in various contexts, particularly in the study of fixed point theory, differential equations, functional equations, integral and integrodifferential equations, optimization, and others. This edited volume presents the recent developments in the theory of the measure of noncompactness and its applications in pure and applied mathematics. It discusses important topics such as measures of noncompactness in the space of regulated functions, application in nonlinear infinite systems of fractional differential equations, and coupled fixed point theorem. Key Highlights: Explains numerical solution of functional integral equation through coupled fixed point theorem, measure of noncompactness and iterative algorithm Showcases applications of the measure of noncompactness and Petryshyn’s fixed point theorem functional integral equations in Banach algebra Explores the existence of solutions of the implicit fractional integral equation via extension of the Darbo’s fixed point theorem Discusses best proximity point results using measure of noncompactness and its applications Includes solvability of some fractional differential equations in the holder space and their numerical treatment via measures of noncompactness This reference work is for scholars and academic researchers in pure and applied mathematics.
Publisher: CRC Press
ISBN: 1040013325
Category : Mathematics
Languages : en
Pages : 205
Book Description
The theory of the measure of noncompactness has proved its significance in various contexts, particularly in the study of fixed point theory, differential equations, functional equations, integral and integrodifferential equations, optimization, and others. This edited volume presents the recent developments in the theory of the measure of noncompactness and its applications in pure and applied mathematics. It discusses important topics such as measures of noncompactness in the space of regulated functions, application in nonlinear infinite systems of fractional differential equations, and coupled fixed point theorem. Key Highlights: Explains numerical solution of functional integral equation through coupled fixed point theorem, measure of noncompactness and iterative algorithm Showcases applications of the measure of noncompactness and Petryshyn’s fixed point theorem functional integral equations in Banach algebra Explores the existence of solutions of the implicit fractional integral equation via extension of the Darbo’s fixed point theorem Discusses best proximity point results using measure of noncompactness and its applications Includes solvability of some fractional differential equations in the holder space and their numerical treatment via measures of noncompactness This reference work is for scholars and academic researchers in pure and applied mathematics.
Measures of Noncompactness and Condensing Operators
Author: Akhmerov
Publisher: Birkhäuser
ISBN: 9783034857284
Category : Science
Languages : en
Pages : 252
Book Description
A condensing (or densifying) operator is a mapping under which the image of any set is in a certain sense more compact than the set itself. The degree of noncompactness of a set is measured by means of functions called measures of noncompactness. The contractive maps and the compact maps [i.e., in this Introduction, the maps that send any bounded set into a relatively compact one; in the main text the term "compact" will be reserved for the operators that, in addition to having this property, are continuous, i.e., in the authors' terminology, for the completely continuous operators] are condensing. For contractive maps one can take as measure of noncompactness the diameter of a set, while for compact maps can take the indicator function of a family of non-relatively com pact sets. The operators of the form F( x) = G( x, x), where G is contractive in the first argument and compact in the second, are also condensing with respect to some natural measures of noncompactness. The linear condensing operators are characterized by the fact that almost all of their spectrum is included in a disc of radius smaller than one. The examples given above show that condensing operators are a sufficiently typical phenomenon in various applications of functional analysis, for example, in the theory of differential and integral equations. As is turns out, the condensing operators have properties similar to the compact ones.
Publisher: Birkhäuser
ISBN: 9783034857284
Category : Science
Languages : en
Pages : 252
Book Description
A condensing (or densifying) operator is a mapping under which the image of any set is in a certain sense more compact than the set itself. The degree of noncompactness of a set is measured by means of functions called measures of noncompactness. The contractive maps and the compact maps [i.e., in this Introduction, the maps that send any bounded set into a relatively compact one; in the main text the term "compact" will be reserved for the operators that, in addition to having this property, are continuous, i.e., in the authors' terminology, for the completely continuous operators] are condensing. For contractive maps one can take as measure of noncompactness the diameter of a set, while for compact maps can take the indicator function of a family of non-relatively com pact sets. The operators of the form F( x) = G( x, x), where G is contractive in the first argument and compact in the second, are also condensing with respect to some natural measures of noncompactness. The linear condensing operators are characterized by the fact that almost all of their spectrum is included in a disc of radius smaller than one. The examples given above show that condensing operators are a sufficiently typical phenomenon in various applications of functional analysis, for example, in the theory of differential and integral equations. As is turns out, the condensing operators have properties similar to the compact ones.
Measures of Noncompactness in Metric Fixed Point Theory
Author: J.M. Ayerbe Toledano
Publisher: Birkhäuser
ISBN: 3034889208
Category : Mathematics
Languages : en
Pages : 222
Book Description
What is clear and easy to grasp attracts us; complications deter David Hilbert The material presented in this volume is based on discussions conducted in peri odically held seminars by the Nonlinear Functional Analysis research group of the University of Seville. This book is mainly addressed to those working or aspiring to work in the field of measures of noncompactness and metric fixed point theory. Special em phasis is made on the results in metric fixed point theory which were derived from geometric coefficients defined by means of measures of noncompactness and on the relationships between nonlinear operators which are contractive for different measures. Several topics in these notes can be found either in texts on measures of noncompactness (see [AKPRSj, [BG]) or in books on metric fixed point theory (see [GK1], [Sm], [Z]). Many other topics have come from papers where the authors of this volume have published the results of their research over the last ten years. However, as in any work of this type, an effort has been made to revise many proofs and to place many others in a correct setting. Our research was made possible by partial support of the D.G.I.C.y'T. and the Junta de Andalucia.
Publisher: Birkhäuser
ISBN: 3034889208
Category : Mathematics
Languages : en
Pages : 222
Book Description
What is clear and easy to grasp attracts us; complications deter David Hilbert The material presented in this volume is based on discussions conducted in peri odically held seminars by the Nonlinear Functional Analysis research group of the University of Seville. This book is mainly addressed to those working or aspiring to work in the field of measures of noncompactness and metric fixed point theory. Special em phasis is made on the results in metric fixed point theory which were derived from geometric coefficients defined by means of measures of noncompactness and on the relationships between nonlinear operators which are contractive for different measures. Several topics in these notes can be found either in texts on measures of noncompactness (see [AKPRSj, [BG]) or in books on metric fixed point theory (see [GK1], [Sm], [Z]). Many other topics have come from papers where the authors of this volume have published the results of their research over the last ten years. However, as in any work of this type, an effort has been made to revise many proofs and to place many others in a correct setting. Our research was made possible by partial support of the D.G.I.C.y'T. and the Junta de Andalucia.
Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations
Author: Józef Banaś
Publisher: Springer
ISBN: 8132218868
Category : Mathematics
Languages : en
Pages : 323
Book Description
This book deals with the study of sequence spaces, matrix transformations, measures of noncompactness and their various applications. The notion of measure of noncompactness is one of the most useful ones available and has many applications. The book discusses some of the existence results for various types of differential and integral equations with the help of measures of noncompactness; in particular, the Hausdorff measure of noncompactness has been applied to obtain necessary and sufficient conditions for matrix operators between BK spaces to be compact operators. The book consists of eight self-contained chapters. Chapter 1 discusses the theory of FK spaces and Chapter 2 various duals of sequence spaces, which are used to characterize the matrix classes between these sequence spaces (FK and BK spaces) in Chapters 3 and 4. Chapter 5 studies the notion of a measure of noncompactness and its properties. The techniques associated with measures of noncompactness are applied to characterize the compact matrix operators in Chapters 6. In Chapters 7 and 8, some of the existence results are discussed for various types of differential and integral equations, which are obtained with the help of argumentations based on compactness conditions.
Publisher: Springer
ISBN: 8132218868
Category : Mathematics
Languages : en
Pages : 323
Book Description
This book deals with the study of sequence spaces, matrix transformations, measures of noncompactness and their various applications. The notion of measure of noncompactness is one of the most useful ones available and has many applications. The book discusses some of the existence results for various types of differential and integral equations with the help of measures of noncompactness; in particular, the Hausdorff measure of noncompactness has been applied to obtain necessary and sufficient conditions for matrix operators between BK spaces to be compact operators. The book consists of eight self-contained chapters. Chapter 1 discusses the theory of FK spaces and Chapter 2 various duals of sequence spaces, which are used to characterize the matrix classes between these sequence spaces (FK and BK spaces) in Chapters 3 and 4. Chapter 5 studies the notion of a measure of noncompactness and its properties. The techniques associated with measures of noncompactness are applied to characterize the compact matrix operators in Chapters 6. In Chapters 7 and 8, some of the existence results are discussed for various types of differential and integral equations, which are obtained with the help of argumentations based on compactness conditions.
Advances in Metric Fixed Point Theory and Applications
Author: Yeol Je Cho
Publisher: Springer Nature
ISBN: 9813366478
Category : Mathematics
Languages : en
Pages : 512
Book Description
This book collects papers on major topics in fixed point theory and its applications. Each chapter is accompanied by basic notions, mathematical preliminaries and proofs of the main results. The book discusses common fixed point theory, convergence theorems, split variational inclusion problems and fixed point problems for asymptotically nonexpansive semigroups; fixed point property and almost fixed point property in digital spaces, nonexpansive semigroups over CAT(κ) spaces, measures of noncompactness, integral equations, the study of fixed points that are zeros of a given function, best proximity point theory, monotone mappings in modular function spaces, fuzzy contractive mappings, ordered hyperbolic metric spaces, generalized contractions in b-metric spaces, multi-tupled fixed points, functional equations in dynamic programming and Picard operators. This book addresses the mathematical community working with methods and tools of nonlinear analysis. It also serves as a reference, source for examples and new approaches associated with fixed point theory and its applications for a wide audience including graduate students and researchers.
Publisher: Springer Nature
ISBN: 9813366478
Category : Mathematics
Languages : en
Pages : 512
Book Description
This book collects papers on major topics in fixed point theory and its applications. Each chapter is accompanied by basic notions, mathematical preliminaries and proofs of the main results. The book discusses common fixed point theory, convergence theorems, split variational inclusion problems and fixed point problems for asymptotically nonexpansive semigroups; fixed point property and almost fixed point property in digital spaces, nonexpansive semigroups over CAT(κ) spaces, measures of noncompactness, integral equations, the study of fixed points that are zeros of a given function, best proximity point theory, monotone mappings in modular function spaces, fuzzy contractive mappings, ordered hyperbolic metric spaces, generalized contractions in b-metric spaces, multi-tupled fixed points, functional equations in dynamic programming and Picard operators. This book addresses the mathematical community working with methods and tools of nonlinear analysis. It also serves as a reference, source for examples and new approaches associated with fixed point theory and its applications for a wide audience including graduate students and researchers.
Topological Nonlinear Analysis II
Author: Michele Matzeu
Publisher: Springer Science & Business Media
ISBN: 146124126X
Category : Mathematics
Languages : en
Pages : 609
Book Description
The main purpose of the present volume is to give a survey of some of the most significant achievements obtained by topological methods in nonlin ear analysis during the last three decades. It is intended, at least partly, as a continuation of Topological Nonlinear Analysis: Degree, Singularity and Varia tions, published in 1995. The survey articles presented are concerned with three main streams of research, that is topological degree, singularity theory and variational methods, They reflect the personal taste of the authors, all of them well known and distinguished specialists. A common feature of these articles is to start with a historical introduction and conclude with recent results, giving a dynamic picture of the state of the art on these topics. Let us mention the fact that most of the materials in this book were pre sented by the authors at the "Second Topological Analysis Workshop on Degree, Singularity and Variations: Developments of the Last 25 Years," held in June 1995 at Villa Tuscolana, Frascati, near Rome. Michele Matzeu Alfonso Vignoli Editors Topological Nonlinear Analysis II Degree, Singularity and Variations Classical Solutions for a Perturbed N-Body System Gianfausto Dell 'A ntonio O. Introduction In this review I shall consider the perturbed N-body system, i.e., a system composed of N point bodies of masses ml, ... mN, described in cartesian co ordinates by the system of equations (0.1) where f) V'k,m == -£l--' m = 1, 2, 3.
Publisher: Springer Science & Business Media
ISBN: 146124126X
Category : Mathematics
Languages : en
Pages : 609
Book Description
The main purpose of the present volume is to give a survey of some of the most significant achievements obtained by topological methods in nonlin ear analysis during the last three decades. It is intended, at least partly, as a continuation of Topological Nonlinear Analysis: Degree, Singularity and Varia tions, published in 1995. The survey articles presented are concerned with three main streams of research, that is topological degree, singularity theory and variational methods, They reflect the personal taste of the authors, all of them well known and distinguished specialists. A common feature of these articles is to start with a historical introduction and conclude with recent results, giving a dynamic picture of the state of the art on these topics. Let us mention the fact that most of the materials in this book were pre sented by the authors at the "Second Topological Analysis Workshop on Degree, Singularity and Variations: Developments of the Last 25 Years," held in June 1995 at Villa Tuscolana, Frascati, near Rome. Michele Matzeu Alfonso Vignoli Editors Topological Nonlinear Analysis II Degree, Singularity and Variations Classical Solutions for a Perturbed N-Body System Gianfausto Dell 'A ntonio O. Introduction In this review I shall consider the perturbed N-body system, i.e., a system composed of N point bodies of masses ml, ... mN, described in cartesian co ordinates by the system of equations (0.1) where f) V'k,m == -£l--' m = 1, 2, 3.
Advanced Functional Analysis
Author: Eberhard Malkowsky
Publisher: CRC Press
ISBN: 0429809557
Category : Mathematics
Languages : en
Pages : 467
Book Description
Functional analysis and operator theory are widely used in the description, understanding and control of dynamical systems and natural processes in physics, chemistry, medicine and the engineering sciences. Advanced Functional Analysis is a self-contained and comprehensive reference for advanced functional analysis and can serve as a guide for related research. The book can be used as a textbook in advanced functional analysis, which is a modern and important field in mathematics, for graduate and postgraduate courses and seminars at universities. At the same time, it enables the interested readers to do their own research. Features Written in a concise and fluent style Covers a broad range of topics Includes related topics from research.
Publisher: CRC Press
ISBN: 0429809557
Category : Mathematics
Languages : en
Pages : 467
Book Description
Functional analysis and operator theory are widely used in the description, understanding and control of dynamical systems and natural processes in physics, chemistry, medicine and the engineering sciences. Advanced Functional Analysis is a self-contained and comprehensive reference for advanced functional analysis and can serve as a guide for related research. The book can be used as a textbook in advanced functional analysis, which is a modern and important field in mathematics, for graduate and postgraduate courses and seminars at universities. At the same time, it enables the interested readers to do their own research. Features Written in a concise and fluent style Covers a broad range of topics Includes related topics from research.
An Introduction to Nonlinear Analysis and Fixed Point Theory
Author: Hemant Kumar Pathak
Publisher: Springer
ISBN: 9811088667
Category : Mathematics
Languages : en
Pages : 845
Book Description
This book systematically introduces the theory of nonlinear analysis, providing an overview of topics such as geometry of Banach spaces, differential calculus in Banach spaces, monotone operators, and fixed point theorems. It also discusses degree theory, nonlinear matrix equations, control theory, differential and integral equations, and inclusions. The book presents surjectivity theorems, variational inequalities, stochastic game theory and mathematical biology, along with a large number of applications of these theories in various other disciplines. Nonlinear analysis is characterised by its applications in numerous interdisciplinary fields, ranging from engineering to space science, hydromechanics to astrophysics, chemistry to biology, theoretical mechanics to biomechanics and economics to stochastic game theory. Organised into ten chapters, the book shows the elegance of the subject and its deep-rooted concepts and techniques, which provide the tools for developing more realistic and accurate models for a variety of phenomena encountered in diverse applied fields. It is intended for graduate and undergraduate students of mathematics and engineering who are familiar with discrete mathematical structures, differential and integral equations, operator theory, measure theory, Banach and Hilbert spaces, locally convex topological vector spaces, and linear functional analysis.
Publisher: Springer
ISBN: 9811088667
Category : Mathematics
Languages : en
Pages : 845
Book Description
This book systematically introduces the theory of nonlinear analysis, providing an overview of topics such as geometry of Banach spaces, differential calculus in Banach spaces, monotone operators, and fixed point theorems. It also discusses degree theory, nonlinear matrix equations, control theory, differential and integral equations, and inclusions. The book presents surjectivity theorems, variational inequalities, stochastic game theory and mathematical biology, along with a large number of applications of these theories in various other disciplines. Nonlinear analysis is characterised by its applications in numerous interdisciplinary fields, ranging from engineering to space science, hydromechanics to astrophysics, chemistry to biology, theoretical mechanics to biomechanics and economics to stochastic game theory. Organised into ten chapters, the book shows the elegance of the subject and its deep-rooted concepts and techniques, which provide the tools for developing more realistic and accurate models for a variety of phenomena encountered in diverse applied fields. It is intended for graduate and undergraduate students of mathematics and engineering who are familiar with discrete mathematical structures, differential and integral equations, operator theory, measure theory, Banach and Hilbert spaces, locally convex topological vector spaces, and linear functional analysis.