Measurement of the Abutment Forces of a Skewed Semi-integral Bridge as a Result of Ambient Temperature Change

Measurement of the Abutment Forces of a Skewed Semi-integral Bridge as a Result of Ambient Temperature Change PDF Author: Andrew T. Metzger
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 428

Get Book Here

Book Description

Measurement of the Abutment Forces of a Skewed Semi-integral Bridge as a Result of Ambient Temperature Change

Measurement of the Abutment Forces of a Skewed Semi-integral Bridge as a Result of Ambient Temperature Change PDF Author: Andrew T. Metzger
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 428

Get Book Here

Book Description


Behavior of Semi-integral Abutment Bridge with Turn-back Wingwalls Supported on Drilled Shafts

Behavior of Semi-integral Abutment Bridge with Turn-back Wingwalls Supported on Drilled Shafts PDF Author: Safiya Ahmed
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 0

Get Book Here

Book Description
Semi-integral abutment bridges are integral abutment bridges with a flexible interface at the abutment to reduce the force transferred to the foundation. Wingwalls in abutment and semi-integral abutment bridges are designed as retaining walls to avoid the sliding of the backfill soil behind the bridge abutments and roadways. Using turn-back wingwalls that are parallel to the bridge diaphragm can provide support for the parapets and minimize the total longitudinal pressure on the abutments. These walls are subjected to axial forces and bending moments due to the thermal movements. These forces can affect the orientation and the connection details of the wingwalls, which could cause cracks in the wingwalls. Despite several studies on integral abutment bridges, there are no studies that combined the behavior of the drilled shafts, footings, abutment walls, and the turnback wingwalls of semi-integral abutment bridges. The long-term performance of a semi-integral abutment bridge with turn-back wingwalls supported on drilled shafts in Ohio was investigated in this doctorate study by instrumenting five drilled shafts, footing, the forward abutment wall, and one of the wingwalls during construction. Strain and temperature were collected in 2017, 2018, and 2019. It was found that the seasonal and daily temperature changes have a significant effect on the changes in the strain in the substructure. The behavior of the abutment wall significantly affects the behavior of the wingwall, footing, and drilled shafts. It was also noticed that the behavior of the abutment was irreversible, and the top of the abutment wall and the top of the drilled shaft induced higher strain than the bottom. Cracks were noticed at the front face of the abutment wall and wingwall, and these cracks tended to close as the air temperature decreased and open as the air temperature increased. The extremely cold weather conditions induced tensile strain higher than the allowable strain at the top corner of the front face of the abutment wall and the rear face of the wingwall. Finite element results were compared with the field data, and the behavior of the substructure was achieved by the model. Parametric studies were conducted on the bridge substructure with different wingwall types and soil backfill. The results showed lower stiffness of soil backfill induces higher stresses in the bridge substructure. Moreover, inline wingwalls induce the highest thermal stresses in the substructure, while flared wingwalls induce the lowest thermal stress compared to the other types of wingwalls.

Integral and Semi-Integral Bridges

Integral and Semi-Integral Bridges PDF Author: Martin P Burke Jr
Publisher: John Wiley & Sons
ISBN: 1444316370
Category : Technology & Engineering
Languages : en
Pages : 272

Get Book Here

Book Description
Worldwide, integral type bridges are being used in greater numbersin lieu of jointed bridges because of their structural simplicity,first-cost economy, and outstanding durability. In the UK and theUS states of Tennessee and Missouri, for example, the constructionof most moderate length bridges is based on the integral bridgeconcept. The state of Washington uses semi-integral bridges almostexclusively, while, depending on subfoundation characteristics, thestate of Ohio and others use a mix of these two bridge types. Integral and Semi-Integral Bridges has been written by apracticing bridge design engineer who has spent his entire careerinvolved in the origination, evaluation and design of such bridgesin the USA, where they have been in use since the late1930’s. This work shows how the analytical complexity due tothe elimination of movable joints can be minimized to negligiblelevels so that most moderate length bridges can be easily andquickly modified or replaced with either integral or semi-integralbridges. Bridge design, construction, and maintenance engineers; bridgedesign administrators; graduate level engineering students andstructural research professionals will all find this bookexceptionally informative for a wide range of highway bridgeapplications.

Field Testing of Integral Abutments

Field Testing of Integral Abutments PDF Author: Robert E. Abendroth
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages :

Get Book Here

Book Description
The objectives of this research program were to evaluate the state-of-art for the design of prestressed-concrete (PC), integralabutment bridges; to validate the assumptions that are incorporated in the current-design procedures for these types of bridges when they are subjected to thermal-loading conditions; and, as appropriate, to revise and improve the current-design procedures for this type of a bridge, as that design relates to the thermally-induced displacements of the abutments and the thermally-induced forces in the abutments and abutment piles. Two, skewed, PC girder, integral-abutment bridges in the State of Iowa were instrumented over a two-year period to measure structural behavior. Longitudinal and transverse displacements and rotation of the integral abutments, strains in the steel piles and in the PC girders, and temperature distributions were recorded throughout the monitoring period for both bridges. The coefficient of thermal expansion and contraction for the concrete in core specimens that were taken from 20 bridge decks and from several PC girders was experimentally measured at the 100%-dry and 100%-saturated conditions. The longitudinal displacements of the integral abutments correlated well with the recorded change in the bridge temperature. Total, longitudinal, pile strains exceeded the minimum, specified, yield strain of the steel for both bridges. Longitudinal strains in the PC girders were well within acceptable limits. The experimental data were used to calibrate and refine finite-element models of both bridges. Discrepancies were not fully explained for the differences between the predicted and measured, thermal expansion of the bridge and vertical rotations of the integral abutments.

The Effects of Temperature on Skewed Integral Abutment Bridges

The Effects of Temperature on Skewed Integral Abutment Bridges PDF Author: Laura Marie Ryan
Publisher:
ISBN:
Category :
Languages : en
Pages : 126

Get Book Here

Book Description


Short and Long-term Performance of a Skewed Integral Abutment Prestressed Concrete Bridge

Short and Long-term Performance of a Skewed Integral Abutment Prestressed Concrete Bridge PDF Author: Rami Ameer Bahjat
Publisher:
ISBN:
Category :
Languages : en
Pages : 219

Get Book Here

Book Description
This study presents the behavior of a precast skewed integral abutment bridge (IAB) using the recently developed NEXT-F Beam section in particular. In order to understand the bridge response, a 3-dimensional finite element model of a bridge (Brimfield Bridge) was developed to examine the thermal effect on the response of the bridge structural components. Eighteen months of field monitoring including abutments displacements, abutment rotations, deck strains, and beam strains was conducted utilizing 136 strain gauges, 6 crackmeters, and 2 tiltmeters. The behavior of the NEXT beams during construction was examined by conducting hand calculation considering all factors that could affect strain readings captured by strain gauges embedded in the 6 beams. Parametric analysis and model validation were conducted considering the effect of soil conditions, distribution of thermal loads, and the coefficient of thermal expansion used for the analyses. Using the validated model, the effect pile orientation was investigated. All the results and illustration plots are presented in detail in this study. As a result of this study, the behavior of the NEXT beams during construction was explained. Long term behavior of the bridge was also explained using field data and FE model. Furthermore, it was concluded that the coefficient of thermal expansion of concrete and temperature variation along the bridge depth and transverse direction can have a significant effect on the strain readings and calculated response, respectively. Lastly, it was found that orienting piles with their web perpendicular on the bridge centerline or with their web perpendicular to the abutment centerline will result in small ratio of moment demand to moment capacity.

Behavior of Concrete Integral Abutment Bridges

Behavior of Concrete Integral Abutment Bridges PDF Author: Jimin Huang
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 726

Get Book Here

Book Description


Atmospheric Emergencies

Atmospheric Emergencies PDF Author:
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 670

Get Book Here

Book Description


Transportation Research Record

Transportation Research Record PDF Author:
Publisher:
ISBN:
Category : Air travel
Languages : en
Pages : 712

Get Book Here

Book Description


Experimental and Analytical Study of Integral-abutment Bridges

Experimental and Analytical Study of Integral-abutment Bridges PDF Author: Brad Harold Sayers
Publisher:
ISBN:
Category :
Languages : en
Pages : 518

Get Book Here

Book Description
Integral-abutment bridges eliminate the expansion joints that are generally used to accommodate bridge length changes due to daily and annual temperature variations. Additional stresses and displacements due to the thermal loading are induced in these indeterminate structures that are not typically associated with bridge structures supported on pins and rollers. The goal of this research was to determine the effects of the thermal loading on two integral-abutment bridges. Extensive field monitoring was conducted on two, in-service, skewed, integral-abutment bridges located in central Iowa. The experimental program included long-term monitoring of longitudinal and transverse abutment displacements, relative displacements of the superstructure over the pier caps, strains in selected steel HP-shaped piles supporting the abutments, strains in several PC girders, bridge member temperatures, and end fixity of selected piles and girders in the abutments. The experimental temperature and displacement data was used to calibrate an ANSYS, finite-element model for each of the two monitored bridge structures. Experimental strains were verified and maximum strains due to the thermal loading were predicted for various members using the finite-element models.