Maximum Principles in Differential Equations

Maximum Principles in Differential Equations PDF Author: Murray H. Protter
Publisher: Springer Science & Business Media
ISBN: 1461252822
Category : Mathematics
Languages : en
Pages : 271

Get Book Here

Book Description
Maximum Principles are central to the theory and applications of second-order partial differential equations and systems. This self-contained text establishes the fundamental principles and provides a variety of applications.

Maximum Principles in Differential Equations

Maximum Principles in Differential Equations PDF Author: Murray H. Protter
Publisher: Springer Science & Business Media
ISBN: 1461252822
Category : Mathematics
Languages : en
Pages : 271

Get Book Here

Book Description
Maximum Principles are central to the theory and applications of second-order partial differential equations and systems. This self-contained text establishes the fundamental principles and provides a variety of applications.

The Maximum Principle

The Maximum Principle PDF Author: Patrizia Pucci
Publisher: Springer Science & Business Media
ISBN: 3764381450
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
Maximum principles are bedrock results in the theory of second order elliptic equations. This principle, simple enough in essence, lends itself to a quite remarkable number of subtle uses when combined appropriately with other notions. Intended for a wide audience, the book provides a clear and comprehensive explanation of the various maximum principles available in elliptic theory, from their beginning for linear equations to recent work on nonlinear and singular equations.

Order Structure and Topological Methods in Nonlinear Partial Differential Equations

Order Structure and Topological Methods in Nonlinear Partial Differential Equations PDF Author: Yihong Du
Publisher: World Scientific
ISBN: 9812566244
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
The maximum principle induces an order structure for partial differential equations, and has become an important tool in nonlinear analysis. This book is the first of two volumes to systematically introduce the applications of order structure in certain nonlinear partial differential equation problems.The maximum principle is revisited through the use of the Krein-Rutman theorem and the principal eigenvalues. Its various versions, such as the moving plane and sliding plane methods, are applied to a variety of important problems of current interest. The upper and lower solution method, especially its weak version, is presented in its most up-to-date form with enough generality to cater for wide applications. Recent progress on the boundary blow-up problems and their applications are discussed, as well as some new symmetry and Liouville type results over half and entire spaces. Some of the results included here are published for the first time.

Maximum Principles and Geometric Applications

Maximum Principles and Geometric Applications PDF Author: Luis J. Alías
Publisher: Springer
ISBN: 3319243373
Category : Mathematics
Languages : en
Pages : 594

Get Book Here

Book Description
This monograph presents an introduction to some geometric and analytic aspects of the maximum principle. In doing so, it analyses with great detail the mathematical tools and geometric foundations needed to develop the various new forms that are presented in the first chapters of the book. In particular, a generalization of the Omori-Yau maximum principle to a wide class of differential operators is given, as well as a corresponding weak maximum principle and its equivalent open form and parabolicity as a special stronger formulation of the latter. In the second part, the attention focuses on a wide range of applications, mainly to geometric problems, but also on some analytic (especially PDEs) questions including: the geometry of submanifolds, hypersurfaces in Riemannian and Lorentzian targets, Ricci solitons, Liouville theorems, uniqueness of solutions of Lichnerowicz-type PDEs and so on. Maximum Principles and Geometric Applications is written in an easy style making it accessible to beginners. The reader is guided with a detailed presentation of some topics of Riemannian geometry that are usually not covered in textbooks. Furthermore, many of the results and even proofs of known results are new and lead to the frontiers of a contemporary and active field of research.

Nonoscillation Theory of Functional Differential Equations with Applications

Nonoscillation Theory of Functional Differential Equations with Applications PDF Author: Ravi P. Agarwal
Publisher: Springer Science & Business Media
ISBN: 1461434556
Category : Mathematics
Languages : en
Pages : 526

Get Book Here

Book Description
This monograph explores nonoscillation and existence of positive solutions for functional differential equations and describes their applications to maximum principles, boundary value problems and stability of these equations. In view of this objective the volume considers a wide class of equations including, scalar equations and systems of different types, equations with variable types of delays and equations with variable deviations of the argument. Each chapter includes an introduction and preliminaries, thus making it complete. Appendices at the end of the book cover reference material. Nonoscillation Theory of Functional Differential Equations with Applications is addressed to a wide audience of researchers in mathematics and practitioners.​

The Action Principle and Partial Differential Equations

The Action Principle and Partial Differential Equations PDF Author: Demetrios Christodoulou
Publisher: Princeton University Press
ISBN: 9780691049571
Category : Mathematics
Languages : en
Pages : 332

Get Book Here

Book Description
This book introduces new methods in the theory of partial differential equations derivable from a Lagrangian. These methods constitute, in part, an extension to partial differential equations of the methods of symplectic geometry and Hamilton-Jacobi theory for Lagrangian systems of ordinary differential equations. A distinguishing characteristic of this approach is that one considers, at once, entire families of solutions of the Euler-Lagrange equations, rather than restricting attention to single solutions at a time. The second part of the book develops a general theory of integral identities, the theory of "compatible currents," which extends the work of E. Noether. Finally, the third part introduces a new general definition of hyperbolicity, based on a quadratic form associated with the Lagrangian, which overcomes the obstacles arising from singularities of the characteristic variety that were encountered in previous approaches. On the basis of the new definition, the domain-of-dependence theorem and stability properties of solutions are derived. Applications to continuum mechanics are discussed throughout the book. The last chapter is devoted to the electrodynamics of nonlinear continuous media.

Elliptic Partial Differential Equations

Elliptic Partial Differential Equations PDF Author: Qing Han
Publisher: American Mathematical Soc.
ISBN: 0821853139
Category : Mathematics
Languages : en
Pages : 161

Get Book Here

Book Description
This volume is based on PDE courses given by the authors at the Courant Institute and at the University of Notre Dame, Indiana. Presented are basic methods for obtaining various a priori estimates for second-order equations of elliptic type with particular emphasis on maximal principles, Harnack inequalities, and their applications. The equations considered in the book are linear; however, the presented methods also apply to nonlinear problems.

Partial Differential Equations

Partial Differential Equations PDF Author: Walter A. Strauss
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467

Get Book Here

Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Maximum Principles and Their Applications

Maximum Principles and Their Applications PDF Author: Sperb
Publisher: Academic Press
ISBN: 0080956645
Category : Computers
Languages : en
Pages : 235

Get Book Here

Book Description
Maximum Principles and Their Applications

Second Order Parabolic Differential Equations

Second Order Parabolic Differential Equations PDF Author: Gary M. Lieberman
Publisher: World Scientific
ISBN: 9789810228835
Category : Mathematics
Languages : en
Pages : 472

Get Book Here

Book Description
Introduction. Maximum principles. Introduction to the theory of weak solutions. Hölder estimates. Existence, uniqueness, and regularity of solutions. Further theory of weak solutions. Strong solutions. Fixed point theorems and their applications. Comparison and maximum principles. Boundary gradient estimates. Global and local gradient bounds. Hölder gradient estimates and existence theorems. The oblique derivative problem for quasilinear parabolic equations. Fully nonlinear equations. Introduction. Monge-Ampère and Hessian equations.