Author: Fred Senese
Publisher: John Wiley & Sons
ISBN: 1119273269
Category : Science
Languages : en
Pages : 585
Book Description
An essential guide to using Maxima, a popular open source symbolic mathematics engine to solve problems, build models, analyze data and explore fundamental concepts Symbolic Mathematics for Chemists offers students of chemistry a guide to Maxima, a popular open source symbolic mathematics engine that can be used to solve problems, build models, analyze data, and explore fundamental chemistry concepts. The author — a noted expert in the field — focuses on the analysis of experimental data obtained in a laboratory setting and the fitting of data and modeling experiments. The text contains a wide variety of illustrative examples and applications in physical chemistry, quantitative analysis and instrumental techniques. Designed as a practical resource, the book is organized around a series of worksheets that are provided in a companion website. Each worksheet has clearly defined goals and learning objectives and a detailed abstract that provides motivation and context for the material. This important resource: Offers an text that shows how to use popular symbolic mathematics engines to solve problems Includes a series of worksheet that are prepared in Maxima Contains step-by-step instructions written in clear terms and includes illustrative examples to enhance critical thinking, creative problem solving and the ability to connect concepts in chemistry Offers hints and case studies that help to master the basics while proficient users are offered more advanced avenues for exploration Written for advanced undergraduate and graduate students in chemistry and instructors looking to enhance their lecture or lab course with symbolic mathematics materials, Symbolic Mathematics for Chemists: A Guide for Maxima Users is an essential resource for solving and exploring quantitative problems in chemistry.
Symbolic Mathematics for Chemists
Author: Fred Senese
Publisher: John Wiley & Sons
ISBN: 1119273269
Category : Science
Languages : en
Pages : 585
Book Description
An essential guide to using Maxima, a popular open source symbolic mathematics engine to solve problems, build models, analyze data and explore fundamental concepts Symbolic Mathematics for Chemists offers students of chemistry a guide to Maxima, a popular open source symbolic mathematics engine that can be used to solve problems, build models, analyze data, and explore fundamental chemistry concepts. The author — a noted expert in the field — focuses on the analysis of experimental data obtained in a laboratory setting and the fitting of data and modeling experiments. The text contains a wide variety of illustrative examples and applications in physical chemistry, quantitative analysis and instrumental techniques. Designed as a practical resource, the book is organized around a series of worksheets that are provided in a companion website. Each worksheet has clearly defined goals and learning objectives and a detailed abstract that provides motivation and context for the material. This important resource: Offers an text that shows how to use popular symbolic mathematics engines to solve problems Includes a series of worksheet that are prepared in Maxima Contains step-by-step instructions written in clear terms and includes illustrative examples to enhance critical thinking, creative problem solving and the ability to connect concepts in chemistry Offers hints and case studies that help to master the basics while proficient users are offered more advanced avenues for exploration Written for advanced undergraduate and graduate students in chemistry and instructors looking to enhance their lecture or lab course with symbolic mathematics materials, Symbolic Mathematics for Chemists: A Guide for Maxima Users is an essential resource for solving and exploring quantitative problems in chemistry.
Publisher: John Wiley & Sons
ISBN: 1119273269
Category : Science
Languages : en
Pages : 585
Book Description
An essential guide to using Maxima, a popular open source symbolic mathematics engine to solve problems, build models, analyze data and explore fundamental concepts Symbolic Mathematics for Chemists offers students of chemistry a guide to Maxima, a popular open source symbolic mathematics engine that can be used to solve problems, build models, analyze data, and explore fundamental chemistry concepts. The author — a noted expert in the field — focuses on the analysis of experimental data obtained in a laboratory setting and the fitting of data and modeling experiments. The text contains a wide variety of illustrative examples and applications in physical chemistry, quantitative analysis and instrumental techniques. Designed as a practical resource, the book is organized around a series of worksheets that are provided in a companion website. Each worksheet has clearly defined goals and learning objectives and a detailed abstract that provides motivation and context for the material. This important resource: Offers an text that shows how to use popular symbolic mathematics engines to solve problems Includes a series of worksheet that are prepared in Maxima Contains step-by-step instructions written in clear terms and includes illustrative examples to enhance critical thinking, creative problem solving and the ability to connect concepts in chemistry Offers hints and case studies that help to master the basics while proficient users are offered more advanced avenues for exploration Written for advanced undergraduate and graduate students in chemistry and instructors looking to enhance their lecture or lab course with symbolic mathematics materials, Symbolic Mathematics for Chemists: A Guide for Maxima Users is an essential resource for solving and exploring quantitative problems in chemistry.
Symbolic Mathematics for Chemists
Author: Fred Senese
Publisher: John Wiley & Sons
ISBN: 1118798694
Category : Science
Languages : en
Pages : 399
Book Description
An essential guide to using Maxima, a popular open source symbolic mathematics engine to solve problems, build models, analyze data and explore fundamental concepts Symbolic Mathematics for Chemists offers students of chemistry a guide to Maxima, a popular open source symbolic mathematics engine that can be used to solve problems, build models, analyze data, and explore fundamental chemistry concepts. The author — a noted expert in the field — focuses on the analysis of experimental data obtained in a laboratory setting and the fitting of data and modeling experiments. The text contains a wide variety of illustrative examples and applications in physical chemistry, quantitative analysis and instrumental techniques. Designed as a practical resource, the book is organized around a series of worksheets that are provided in a companion website. Each worksheet has clearly defined goals and learning objectives and a detailed abstract that provides motivation and context for the material. This important resource: Offers an text that shows how to use popular symbolic mathematics engines to solve problems Includes a series of worksheet that are prepared in Maxima Contains step-by-step instructions written in clear terms and includes illustrative examples to enhance critical thinking, creative problem solving and the ability to connect concepts in chemistry Offers hints and case studies that help to master the basics while proficient users are offered more advanced avenues for exploration Written for advanced undergraduate and graduate students in chemistry and instructors looking to enhance their lecture or lab course with symbolic mathematics materials, Symbolic Mathematics for Chemists: A Guide for Maxima Users is an essential resource for solving and exploring quantitative problems in chemistry.
Publisher: John Wiley & Sons
ISBN: 1118798694
Category : Science
Languages : en
Pages : 399
Book Description
An essential guide to using Maxima, a popular open source symbolic mathematics engine to solve problems, build models, analyze data and explore fundamental concepts Symbolic Mathematics for Chemists offers students of chemistry a guide to Maxima, a popular open source symbolic mathematics engine that can be used to solve problems, build models, analyze data, and explore fundamental chemistry concepts. The author — a noted expert in the field — focuses on the analysis of experimental data obtained in a laboratory setting and the fitting of data and modeling experiments. The text contains a wide variety of illustrative examples and applications in physical chemistry, quantitative analysis and instrumental techniques. Designed as a practical resource, the book is organized around a series of worksheets that are provided in a companion website. Each worksheet has clearly defined goals and learning objectives and a detailed abstract that provides motivation and context for the material. This important resource: Offers an text that shows how to use popular symbolic mathematics engines to solve problems Includes a series of worksheet that are prepared in Maxima Contains step-by-step instructions written in clear terms and includes illustrative examples to enhance critical thinking, creative problem solving and the ability to connect concepts in chemistry Offers hints and case studies that help to master the basics while proficient users are offered more advanced avenues for exploration Written for advanced undergraduate and graduate students in chemistry and instructors looking to enhance their lecture or lab course with symbolic mathematics materials, Symbolic Mathematics for Chemists: A Guide for Maxima Users is an essential resource for solving and exploring quantitative problems in chemistry.
Mathematics for Engineers and Science Labs Using Maxima
Author: Seifedine Kadry
Publisher: CRC Press
ISBN: 0429891598
Category : Mathematics
Languages : en
Pages : 306
Book Description
This book is designed to be a vital companion to math textbooks covering the topics of precalculus, calculus, linear algebra, differential equations, and probability and statistics. While these existing textbooks focus mainly on solving mathematic problems using the old paper-and-pencil method, this book teaches how to solve these problems using Maxima open-source software. Maxima is a system for the manipulation of symbolic and numerical expressions, including differentiation, integration, Taylor series, Laplace transforms, ordinary differential equations, systems of linear equations, polynomials, sets, lists, vectors, and matrices. One of the benefits of using Maxima to solve mathematics problems is the immediacy with which it produces answers. Investing in learning Maxima now will pay off in the future, particularly for students and beginning professionals in mathematics, science, and engineering. The volume will help readers to apply nearly all of the Maxima skills discussed here to future courses and research.
Publisher: CRC Press
ISBN: 0429891598
Category : Mathematics
Languages : en
Pages : 306
Book Description
This book is designed to be a vital companion to math textbooks covering the topics of precalculus, calculus, linear algebra, differential equations, and probability and statistics. While these existing textbooks focus mainly on solving mathematic problems using the old paper-and-pencil method, this book teaches how to solve these problems using Maxima open-source software. Maxima is a system for the manipulation of symbolic and numerical expressions, including differentiation, integration, Taylor series, Laplace transforms, ordinary differential equations, systems of linear equations, polynomials, sets, lists, vectors, and matrices. One of the benefits of using Maxima to solve mathematics problems is the immediacy with which it produces answers. Investing in learning Maxima now will pay off in the future, particularly for students and beginning professionals in mathematics, science, and engineering. The volume will help readers to apply nearly all of the Maxima skills discussed here to future courses and research.
Numerical Analysis Using R
Author: Graham W. Griffiths
Publisher: Cambridge University Press
ISBN: 131665415X
Category : Mathematics
Languages : en
Pages : 637
Book Description
This book presents the latest numerical solutions to initial value problems and boundary value problems described by ODEs and PDEs. The author offers practical methods that can be adapted to solve wide ranges of problems and illustrates them in the increasingly popular open source computer language R, allowing integration with more statistically based methods. The book begins with standard techniques, followed by an overview of 'high resolution' flux limiters and WENO to solve problems with solutions exhibiting high gradient phenomena. Meshless methods using radial basis functions are then discussed in the context of scattered data interpolation and the solution of PDEs on irregular grids. Three detailed case studies demonstrate how numerical methods can be used to tackle very different complex problems. With its focus on practical solutions to real-world problems, this book will be useful to students and practitioners in all areas of science and engineering, especially those using R.
Publisher: Cambridge University Press
ISBN: 131665415X
Category : Mathematics
Languages : en
Pages : 637
Book Description
This book presents the latest numerical solutions to initial value problems and boundary value problems described by ODEs and PDEs. The author offers practical methods that can be adapted to solve wide ranges of problems and illustrates them in the increasingly popular open source computer language R, allowing integration with more statistically based methods. The book begins with standard techniques, followed by an overview of 'high resolution' flux limiters and WENO to solve problems with solutions exhibiting high gradient phenomena. Meshless methods using radial basis functions are then discussed in the context of scattered data interpolation and the solution of PDEs on irregular grids. Three detailed case studies demonstrate how numerical methods can be used to tackle very different complex problems. With its focus on practical solutions to real-world problems, this book will be useful to students and practitioners in all areas of science and engineering, especially those using R.
Handbook of Differential Equations
Author: Daniel Zwillinger
Publisher: CRC Press
ISBN: 100046816X
Category : Mathematics
Languages : en
Pages : 737
Book Description
Through the previous three editions, Handbook of Differential Equations has proven an invaluable reference for anyone working within the field of mathematics, including academics, students, scientists, and professional engineers. The book is a compilation of methods for solving and approximating differential equations. These include the most widely applicable methods for solving and approximating differential equations, as well as numerous methods. Topics include methods for ordinary differential equations, partial differential equations, stochastic differential equations, and systems of such equations. Included for nearly every method are: The types of equations to which the method is applicable The idea behind the method The procedure for carrying out the method At least one simple example of the method Any cautions that should be exercised Notes for more advanced users The fourth edition includes corrections, many supplied by readers, as well as many new methods and techniques. These new and corrected entries make necessary improvements in this edition.
Publisher: CRC Press
ISBN: 100046816X
Category : Mathematics
Languages : en
Pages : 737
Book Description
Through the previous three editions, Handbook of Differential Equations has proven an invaluable reference for anyone working within the field of mathematics, including academics, students, scientists, and professional engineers. The book is a compilation of methods for solving and approximating differential equations. These include the most widely applicable methods for solving and approximating differential equations, as well as numerous methods. Topics include methods for ordinary differential equations, partial differential equations, stochastic differential equations, and systems of such equations. Included for nearly every method are: The types of equations to which the method is applicable The idea behind the method The procedure for carrying out the method At least one simple example of the method Any cautions that should be exercised Notes for more advanced users The fourth edition includes corrections, many supplied by readers, as well as many new methods and techniques. These new and corrected entries make necessary improvements in this edition.
Microeconomic Theory and Computation
Author: Michael R. Hammock
Publisher: Springer Science & Business Media
ISBN: 1461494176
Category : Business & Economics
Languages : en
Pages : 394
Book Description
Economists can use computer algebra systems to manipulate symbolic models, derive numerical computations, and analyze empirical relationships among variables. Maxima is an open-source multi-platform computer algebra system that rivals proprietary software. Maxima’s symbolic and computational capabilities enable economists and financial analysts to develop a deeper understanding of models by allowing them to explore the implications of differences in parameter values, providing numerical solutions to problems that would be otherwise intractable, and by providing graphical representations that can guide analysis. This book provides a step-by-step tutorial for using this program to examine the economic relationships that form the core of microeconomics in a way that complements traditional modeling techniques. Readers learn how to phrase the relevant analysis and how symbolic expressions, numerical computations, and graphical representations can be used to learn from microeconomic models. In particular, comparative statics analysis is facilitated. Little has been published on Maxima and its applications in economics and finance, and this volume will appeal to advanced undergraduates, graduate-level students studying microeconomics, academic researchers in economics and finance, economists, and financial analysts.
Publisher: Springer Science & Business Media
ISBN: 1461494176
Category : Business & Economics
Languages : en
Pages : 394
Book Description
Economists can use computer algebra systems to manipulate symbolic models, derive numerical computations, and analyze empirical relationships among variables. Maxima is an open-source multi-platform computer algebra system that rivals proprietary software. Maxima’s symbolic and computational capabilities enable economists and financial analysts to develop a deeper understanding of models by allowing them to explore the implications of differences in parameter values, providing numerical solutions to problems that would be otherwise intractable, and by providing graphical representations that can guide analysis. This book provides a step-by-step tutorial for using this program to examine the economic relationships that form the core of microeconomics in a way that complements traditional modeling techniques. Readers learn how to phrase the relevant analysis and how symbolic expressions, numerical computations, and graphical representations can be used to learn from microeconomic models. In particular, comparative statics analysis is facilitated. Little has been published on Maxima and its applications in economics and finance, and this volume will appeal to advanced undergraduates, graduate-level students studying microeconomics, academic researchers in economics and finance, economists, and financial analysts.
Mathematical Modeling and Simulation
Author: Kai Velten
Publisher: John Wiley & Sons
ISBN: 3527627618
Category : Science
Languages : en
Pages : 362
Book Description
This concise and clear introduction to the topic requires only basic knowledge of calculus and linear algebra - all other concepts and ideas are developed in the course of the book. Lucidly written so as to appeal to undergraduates and practitioners alike, it enables readers to set up simple mathematical models on their own and to interpret their results and those of others critically. To achieve this, many examples have been chosen from various fields, such as biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical and process engineering, which are subsequently discussed in detail. Based on the author`s modeling and simulation experience in science and engineering and as a consultant, the book answers such basic questions as: What is a mathematical model? What types of models do exist? Which model is appropriate for a particular problem? What are simulation, parameter estimation, and validation? The book relies exclusively upon open-source software which is available to everybody free of charge. The entire book software - including 3D CFD and structural mechanics simulation software - can be used based on a free CAELinux-Live-DVD that is available in the Internet (works on most machines and operating systems).
Publisher: John Wiley & Sons
ISBN: 3527627618
Category : Science
Languages : en
Pages : 362
Book Description
This concise and clear introduction to the topic requires only basic knowledge of calculus and linear algebra - all other concepts and ideas are developed in the course of the book. Lucidly written so as to appeal to undergraduates and practitioners alike, it enables readers to set up simple mathematical models on their own and to interpret their results and those of others critically. To achieve this, many examples have been chosen from various fields, such as biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical and process engineering, which are subsequently discussed in detail. Based on the author`s modeling and simulation experience in science and engineering and as a consultant, the book answers such basic questions as: What is a mathematical model? What types of models do exist? Which model is appropriate for a particular problem? What are simulation, parameter estimation, and validation? The book relies exclusively upon open-source software which is available to everybody free of charge. The entire book software - including 3D CFD and structural mechanics simulation software - can be used based on a free CAELinux-Live-DVD that is available in the Internet (works on most machines and operating systems).
Scientific Programming
Author: Jorge Alberto Calvo
Publisher: Cambridge Scholars Publishing
ISBN: 1527523845
Category : Computers
Languages : en
Pages : 562
Book Description
This book offers an introduction to computer programming, numerical analysis, and other mathematical ideas that extend the basic topics learned in calculus. It illustrates how mathematicians and scientists write computer programs, covering the general building blocks of programming languages and a description of how these concepts fit together to allow computers to produce the results they do. Topics explored here include binary arithmetic, algorithms for rendering graphics, the smooth interpolation of discrete data, and the numerical approximation of non-elementary integrals. The book uses an open-source computer algebra system called Maxima. Using Maxima, first-time programmers can perform familiar tasks, such as graphing functions or solving equations, and learn the basic structures of programming before moving on to other popular programming languages. The epilogue provides some simple examples of how this process works in practice. The book will particularly appeal to students who have finished their calculus sequence.
Publisher: Cambridge Scholars Publishing
ISBN: 1527523845
Category : Computers
Languages : en
Pages : 562
Book Description
This book offers an introduction to computer programming, numerical analysis, and other mathematical ideas that extend the basic topics learned in calculus. It illustrates how mathematicians and scientists write computer programs, covering the general building blocks of programming languages and a description of how these concepts fit together to allow computers to produce the results they do. Topics explored here include binary arithmetic, algorithms for rendering graphics, the smooth interpolation of discrete data, and the numerical approximation of non-elementary integrals. The book uses an open-source computer algebra system called Maxima. Using Maxima, first-time programmers can perform familiar tasks, such as graphing functions or solving equations, and learn the basic structures of programming before moving on to other popular programming languages. The epilogue provides some simple examples of how this process works in practice. The book will particularly appeal to students who have finished their calculus sequence.
Maxima Programmes for Differential Equations Using Foss ( Maxima): A Book of Programmes Using Maxima for Differential Equations
Author: Dr Yogeesh N
Publisher: Independently Published
ISBN: 9781728765570
Category : Education
Languages : en
Pages : 48
Book Description
The main idea of bringing out this manual book is to make Teachers and students of Mathematics, are more easy towards doing mathematics practical
Publisher: Independently Published
ISBN: 9781728765570
Category : Education
Languages : en
Pages : 48
Book Description
The main idea of bringing out this manual book is to make Teachers and students of Mathematics, are more easy towards doing mathematics practical
Perturbation Methods, Bifurcation Theory and Computer Algebra
Author: Richard H. Rand
Publisher: Springer Science & Business Media
ISBN: 1461210607
Category : Mathematics
Languages : en
Pages : 254
Book Description
Perturbation methods have always been an important tool for treating nonlinear differential equations. Now the drudgery associated with them has been eliminated! This book offers computer algebra (MACSYMA) programs which implement the most popular perturbation methods. Not only does this avoid the errors associated with hand computation, but the increase in efficiency permits more complicated problems to be tackled. This book is useful both for the beginner learning perturbation methods for the first time, as well as for the researcher. Methods covered include: Lindstedt's method, center manifolds, normal forms, two variable expansion method (method of multiple scales), averaging, Lie transforms and Liapunov-Schmidt reduction. For each method the book includes an introduction and some example problems solved both by hand and by machine. The examples feature common bifurcations such as the pitchfork and the Hopf. The MACSYMA code for each method is given and suggested exercises are provided at the end of each Chapter. An Appendix offers a brief introduction to MACSYMA.
Publisher: Springer Science & Business Media
ISBN: 1461210607
Category : Mathematics
Languages : en
Pages : 254
Book Description
Perturbation methods have always been an important tool for treating nonlinear differential equations. Now the drudgery associated with them has been eliminated! This book offers computer algebra (MACSYMA) programs which implement the most popular perturbation methods. Not only does this avoid the errors associated with hand computation, but the increase in efficiency permits more complicated problems to be tackled. This book is useful both for the beginner learning perturbation methods for the first time, as well as for the researcher. Methods covered include: Lindstedt's method, center manifolds, normal forms, two variable expansion method (method of multiple scales), averaging, Lie transforms and Liapunov-Schmidt reduction. For each method the book includes an introduction and some example problems solved both by hand and by machine. The examples feature common bifurcations such as the pitchfork and the Hopf. The MACSYMA code for each method is given and suggested exercises are provided at the end of each Chapter. An Appendix offers a brief introduction to MACSYMA.